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Abstract
The CORDIC algorithm has been widely used as a powerful and flexible generic
architecture to implement many algorithms involving non-trivial arithmetic.
However, when using its fastest, i.e. unfolded, implementation it exhibits
excessive silicon area demands. Exploiting some peculiarities of the algorithm
permits simpler hardware structures in the unfolded case yielding a substantial
area reduction. Thus, power consumption is decreased, too. These reductions have
no speed penalty. The benefits of the improved architecture have been verified by
developing VHDL models and synthesizing sample layouts for comparison
purposes.
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1. INTRODUCTION

For several applications CORDIC processing units have been shown to deliver
superior performance when compared with more conventional approaches. This is
due to the fact that many advanced algorithms can be interpreted as generalized
vector rotations, for which CORDIC is especially suited to.
Considering the implementation part of signal processing systems, the main
shortcoming of CORDIC-based pipeline or array architectures, i.e. so called
unfolded architectures,  is their increased hardware complexity. In this paper we
address CORDIC´s hardware complexity and describe architectures with
considerably reduced chip area requirements. It will be shown that this area
shrinking is obtained with no loss in speed.



2. REDUNDANT CORDIC ALGORITHMS

The CORDIC algorithm is defined by recurrences in three coordinates /1/:
xi+1  = xi - m σi 2

-S(m,i) yi (1)

yi+1  = yi + σi  2
-S(m,i) xi (2)

zi+1 = zi - σi αm,i      i = 0,1,...,N-1 (3)

where m denotes the coordinate system (m=1 means circular, m=0 linear, m=-1
hyperbolic), S(m,i) the shift sequence S(0,i)=S(1,i)=0,1,..,n and  S(-1,i)
=1,2,3,4,4,5,..,3i,3i+1,3i+1,3i+2,..n,  αm,i is called the rotation angle, σi denotes

the rotation direction, usually σi ∈ {-1,1} in non-redundant number systems and

σi ∈ {-1,01} in redundant systems (but σi = 0 has to be avoided, cf. below). The

precision in bit is given by n while N means the number of iterations with N = n
for m = 0 and m = 1 (for m = -1 some extra iterations are necessary, see S(m,i)).
The rotation angle depends on S(m,i) according to

αm,i = 
1

m
)tan-1( m 2-S(m,i)) = 



tanh-1(2-S(-1,i))for m=-1

 tan-1(2-S(1,i)) for m=1

 2-S(0,i) for m=0

(4)

Two operational modes are possible, rotation or vectoring. The rotation direction
factor σi is determined by the following equation:

σi = 


sign(zi)    for zi → 0   (i.e. rotation)

-sign(xi yi)   for yi → 0   (i.e. vectoring). (5)

where sign(λ) = 1 for λ ≥ 0 , else sign(λ) = -1. The algorithm converges for all
input data inside the region of convergence, given by

Cm = ∑
i=0

N-1

αm,i ≥ 



 1

m
 tan-1( m y0/x0)   for yn → 0

  z0   for zn → 0

(6)

The solution of the recurrences (1-3) is given in Table I with

                            km= ∏
i=0

N-1

(1+m σi

2
 2-2S(m,i))1/2    (7)

being the scaling factor and x0, y0, and z0 the starting values of the iterations.

Equation (5) is only valid for non-redundant addition schemes. As these are carry-
dependent and, consequently, inherently slow, some recently described proposals
use redundant adders like carry-save /2/ or redundant binary /3,4,5,6/ adders.
However, while delivering superior speed due to their carry-independent nature,
redundant addition schemes introduce certain algorithmic difficulties. The sign of



a number can not be easily derived from the sign bit in the leftmost bit position as
in the two’s complement number system. In fact, in redundant schemes the most
significant digit could equal zero. This would suggest choosing σi = 0, but this

choice is commonly prohibited due to the inevitable variation of the otherwise
fixed scaling factor km, thus loosing all benefits of easy scaling factor

compensation /6/.  So further bits, at worst all bits, would have to be inspected for
sign evaluation, loosing the speed advantage.
To overcome this conflict most authors /2,3,4,6/ utilize the approach found in fast
SRT-division /7/: some most significant digits of the number are inspected and

this estimate is used to
determine an appropri-
ate σi. Provided the

absolute value of the
estimate is above a
specific margin, σi is

set to +1 or -1,
respectively, otherwise
to 0. This choice can
disturb the convergen-
ce behavior of the
algorithm due to
possibly wrong rotation

direction. As has been shown in /2,3,4,6/ this can be compensated by simple itera-
tion doubling after a specific number of microrotations.
The number of iteration doublings linearly depends on the number of inspected
digits /3,4,6/. For p inspected digits each (p-1)th iteration has to be repeated.
An alternative approach to keep the scaling factor constant is given in /8/ by using
a reformulation of the CORDIC algorithm and computing absolute values. This
idea is an adaptation of an algorithm first described to speed up the add-compare-
select loop in Viterbi decoders. Unfortunately, it nearly doubles the amount of
registers in the pipeline, thus significantly increasing chip area and latency.
Therefore, this idea can not be used when chip area is the primary issue. In the
following we build upon the iteration doubling method /2,3,4,6/.
Due to possible finite word length effects, angle errors and overflow prevention,
we need a unified machine word length of wxy = n+gxy+oxy+1 = n+log2(n)+3  bit

for the x and y datapath and wz = n+gz+oz+1= n+log2(n/3)+4 bit for the z data-

path. A more detailed discussion of CORDIC´s inherent quantization errors can
be found in /9/.

zn  →  0   (rotation) yn  →  0  (vectoring)

m = -1 xn = k-1(x0cosh(z0)+y0sinh(z0))

yn= k-1(x0cosh(z0)+y0sinh(z0))

xn = k-1 x
2
0 - y

2
0

zn = z0+tanh-1(y0/x0)

m = 0 xn = x0
yn = x0 z0 + y0

xn = x0
zn = z0 + y0 / x0

m = 1 xn = k1 (x0 cos(z0)-y0 sin(z0))

yn= k1 (y0 cos(z0)+x0 sin(z0))

xn = k1 x
2
0 + y

2
0

zn = z0+tan-1 (y0/x0)

Table I: CORDIC functions



3.  SILICON AREA CONSIDERATIONS

A typical architecture that implements the recurrences (1-3) in an unfolded spatial
array manner maps each iteration to one row of the array. As we assume N ≅ n
iterations and three datapaths with an internal word length of at least n bit (see
above) the area complexity of a CORDIC array is proportional to 3n2. As an
example, the required silicon area of the chip  described in /10/, a IEEE-754
single precision floating point CORDIC pipeline implemented with non-
redundant adders, exceeds 150 mm2 in a 1.5 µm CMOS technology. Two thirds of
this area are devoted to the iteration execution. Other published implementations
with similar hardware efforts include /11,12,13/. Obviously, any reduction in chip
area due to algorithmic and architectural modifications would improve yield and
decrease production cost. In addition it reduces the power consumption, which is
considered to be of growing significance in wireless applications. The motivation
for this work is, therefore, to reduce the chip area to allow the application of
CORDIC array and pipeline architectures in die size critical areas, i.e. embedded
control, but with no speed penalty.
Previous work on area reduction has focused on different parts of the algorithm.
At first, many researchers investigated methods to reduce the hardware amount
necessary for scaling factor compensation by incorporating the scaling into the
iteration or by optimizing the number of scaling iterations /15/.
Further research concentrated on the optimization of constant scale factor
algorithms emerging from the application of redundant adders, as mentioned
before. Subsequently, some authors tried to reduce the number of iterations, i.e. /5/
by applying a prediction scheme in the rotation mode resulting in a z-path
reduction to roughly one third. This method can be also extended to the vectoring
mode, as has been demonstrated in /16/. Thus the hardware requirements of the z-
path decrease considerably for rotation and vectoring mode.
The prediction of some σi in the rotation mode /5/ allows for partly recoding σi  so
as two iterations in x and y can be multipexed to one and selecting one of two
different shifts. Recently, this concept has been generalized to vectoring by
adapting radix-4 SRT-division operand-prescaling /17/ yielding a unified mixed
radix 2-4 architecture with n/4-1 less microrotations than a pure radix-2
architecture /6/.
One observation which can be made is that the aforementioned modifications
trade algorithmic and architectural simplicity of CORDIC for an overall reduction
of microrotations. Therefore, for non-redundant addition schemes the impact of
decreasing magnitudes of xi yi and zi in vectoring and rotation mode, respectively,

has been investigated in /16/, yielding a decrease in the widths of the
corresponding datapaths and, consequently, lower silicon area. In the following,
we investigate whether this approach can be extended to the redundant case, too.



4.  AREA REDUCED ARCHITECTURES

4.1 Rotation mode x- and y- datapath

Fig. 1:  Section of data-
path for standard x-
iterations

Figure 1 depicts the
usual way to implement
the x iterations (shown
for m=1). The iterations
for y are implemented
correspondingly.
Here we chose 4-2
redundant binary adders
for implementation.
They can be realised in
static CMOS circuit
technique as given in
/18/. The situation for
carry-save adders is
about the same. It
should be noted that

appropriate measures have to be taken to avoid pseudo overflows due to the
redundant representation. This can be readily incorporated into the 4-2 redundant
binary adder cell /19/ and will not be indicated here for sake of simplicity.  For the
same reason we do not consider any iteration repetition necessary for guaranteeing
a constant scaling factor. Starting with the second iteration and the most
significant digit an increasing number of zeros has to be added to the
corresponding digits of xi due to the shift sequence.
In these positions, it is sufficient for proper iteration results to take into account
the previous value of xi (yi  in the y-datapath) and the transfer digit from the next
lower significant digit position.  Hence, a much simpler redundant addition cell
can be employed. Fig. 2 demonstrates the corresponding architecture. We refer to
this adder as a 2-2 redundant binary adder (RBA). It can be noted that not only a
simpler addition resulting from one fixed addend occurs.
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Thus the circuit for one digit position reduces from a 4-2 RBA, sign inverting
logic, and two latches to one 2-2 RBA and two latches.  In Fig. 3 a fully static

CMOS version of a 4-2
RBA requiring 42
transistors is shown
/18/.  The redundant
binary numbers are
coded in sign and
amplitude (value)
format, indicated by
indices s and a,
respectively. The
additional steering and
inverting logic amounts
to one inverter and one
2-1 multiplexer, adding
at least 6 transistors
when employing
transmission gate logic.
In summary, we need
48 transistors.   The
signals p and q
represent the internal
transfer digit. Dotted
areas indicate AOI-
gates.
Fig. 4 exhibits a 3-2
RBA cell, which was
reported in /18/. It
requires 22 transistors.
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    Fig. 5:  CMOS 2-2 RBA cell
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On the other hand, the 2-2 RBA can be directly derived from this circuit, yielding
the circuitry shown in Fig. 5, requiring only 14 transistors.

4.2 Rotation mode z-datapath

For redundant adders, the original z-iteration according to  Eq. 3 is modified to
zi+1 = 2(zi - σi 2

S(m,i)αm,i) /4/.  In this way, the critical bits to be examined for sign

estimation are fixed at the same position for all iterations. While this is mandatory
for recursive implementations it also improves the regularity of the physical
implementation in array and pipeline structures, as shown in Fig. 6.

Fig. 6:  Section of
datapath for standard z-
iterations

In this figure we
identify the lower right
triangle of adders (a
RT-adder is a 3-2 RBA
with sign steering
logic) which do not
contribute to the sign
estimation, as they are
adding zeros. Based on
this observation we can
diagonally prune this
array of adders to the
structure given in Fig. 7
with no loss in
precision or speed.
Neglecting the hard-

ware necessary for sign estimation, the gate count has been roughly halved.

4.3 Vectoring mode x- and y-datapath

For redundant adders, the original iterations for x and y according to  Eqs. 1 and 2
are usually modified to xi+1  = xi - m σi 2

-2S(m,i) yi (8)

yi+1 = 2(yi + σi xi) (9)
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Let us consider the x-path and take into account that the absolute value of yi  is
kept constant to a
specific degree by Eq.
(9). Then it can be
deduced that in the x-
path about the same
situation occurs as for
x in the rotation mode
(Fig. 1). However,
with each iteration the
amount of zeroes
which have to be
added to the most
significant digit
positions increases by
two. Thus, referring to
Fig. 1,  in each
iteration two (instead
of one) more 4-2 RBA
cells can be substituted
by 2-2 RBA cells
(called R0) beginning
from higher order
digit positions  Thus,
even more hardware

savings than in the rotation mode are possible. Furthermore, the x-iteration can be
halted after n/2+1 iterations as n-bit precision has been achieved /16,20/.
Considering the y-path (Eq. 9) about the same situation as for the z-path in
rotation mode exists. However, 4-2 RBA’s have to be employed.  An increasingly
number of zeroes can be added, starting from the least significant digit position.
The error resulting from not adding the whole length of xi and yi  does not affect
the overall iteration as it is hidden in the guard digits. So we can omit the lower
right triangle of 4-2 RBA cells, yielding a reduction in gate count by one half of
the standard architecture.

4.4 Vectoring mode z-datapath

The z-path and the corresponding iteration equation (3)  resembles the x- and y-
path in rotation mode.  That is, we add constantly decreasing values of the
rotation angle αm,i  to zi . The resulting architecture is similar to Fig. 2, yielding an
upper right triangle of 3-2 RBA cells (Fig. 4) and a lower left triangle of 2-2 RBA
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cells (Fig. 5).  Again, the hardware savings are not only due to the simpler adder
cells, but also caused by the partly  dispensable sign steering logic.

5.  EVALUATION

As speed (latency as well as throughput) is not affected by our reductions we
concentrate on a discussion of the area requirements. It should be noted that the
described modifications are not only fully applicable to redundant constant scale
factor methods which employ correcting iterations /3,4,6/ but also partly
applicable to the „absolute value“ method given in /8/. Therefore, as unmodified
references for comparison we assume the mixed radix 2-4 architecture /6/ and the
„absolute value“ method /8/.
As our discussion is based on the assumption that we use correcting iterations we
have to establish a base for comparison. We assume that we assimilate enough
higher significant digits to guarantee that only each fourth iteration has to be
repeated. For a detailed discussion of this topic see, for example, /4,6/. Also, no
scaling factor compensation, no sign steering logic, and m = 1 is assumed and no
guard and overflow digits in order to keep the comparison simple. The standard
architecture then requires 1.25n iterations with full length datapaths.
A 4-2 RBA, 3-2 RBA, and 2-2 RBA occupy an area equal to 2, 1, and 2/3 full
adders, respectively. This assumption can be proved when comparing the
transistor counts of the corresponding figures 3,4, and 5.
The improved correcting iterations method /6/ and our  architectures employ
σi∈{-1,1} for i ≤ n/4, σi∈{-1,0,1} for n/4 < i ≤n/2 using the approach given in /5/

which avoids correcting iterations, and radix-4 iterations for i<n /2 .
Our architectures are also supposed to use only one third of the z-path and a
parallel prediction of all further σi  in the rotation mode  /16,21/. In vectoring

mode, as αm,i = 2-S(m,i) for S(m,i) ≥ n/3  a single summing of the bits σi2
-S(m,i) is

necessary, reducing two third of the z-path to one redundant subtraction /16/.

5.1 Rotation mode

The „absolute value“ method needs 7.75n2  latches and 5n2  equivalent full adders
/8/. The mixed radix 2-4 architecture /6/ requires n/4 * 1,25 + n/4 + n/4 = 0.8125n
iterations.  In the first half of the iterations it uses three full length datapaths, in
the second half only two datapaths are necessary by using the prediction method.
Thus (3 * 2 * 2.25n/4 + 2 * 2 * n/4)*n = 4.375n2 latches (note: two latches per
digit) and (2.25n/4 * (2 * 2 + 1)  + n/4 * (2+1)) n = 3.5625 n2 equivalent full
adders are necessary.



Our architecture as depicted in Fig. 8 (t=2.25n/4) has the same number of
iterations as the mixed radix approach. We need 2*[2 * (2.25n/4 * n/2 * 3/2 + n/2
* n/4 * ½ ) + 2/3 * (2.25n/4 * n/2 * ½ + n/2 * n/4 * 3/2)] = 2.375n2 equivalent
full adders for x and y. The z-datapath contains j=n /3+0.25n/4 ≅ 0.4n iteration
stages with (normally) 0.4n2 3-2 RBA’s. However, 1/3n * 0.4n * ½ of these adders
can be omitted, yielding n2/3 equivalent full adders for z. On the whole, the
suggested architecture needs 2.7n2 equivalent full adders.    
The latch count is the same as in the mixed radix case minus the savings in z, thus
2*(2 * 2.25n2/4 +  2 * n2/4 +  0.4n2 - 1/3n * 0.4n * ½) = 3.9n2 latches.

Fig. 8:   
Combinational area
of proposed architec-
ture (latches in x and
y must have full
length)

5.2 Vectoring mode

The absolute value method needs n3/6+9.5n2 latches and 5n2  equivalent full adders
/8/. The mixed radix 2-4 architecture /6/ requires the same hardware as in the
rotation mode as it represents a unified architecture.  The determination of σi is

much more complicated due to the necessary prescaling of x and y. To simplify
the comparison we build upon the same approach, but do not take into account the
necessary hardware.
In our proposal, the x-iteration stops after 2.25n/4 iterations.   So the x-datapath
can be implemented with 2.25n/4 * n  * ½ 4-2 RBA’s and 2-2 RBA’s each,
resulting in 2 * 2.25/4 * ½ + 2/3 * 2.25/4 * ½) = 0.75n2 equivalent full adders.
The y-path requires 4.25n/4 iterations and on the average n/2 4-2 RBAs yielding
about n2 full adders.  In the z-path we have 0.4n iterations with 0.2n2  3-2 and 2-2
RBS each. So we have n2/3 full adders and in summary for all datapaths slightly
more than 2n2 full adders.
The latch count is 2 * 2.5n2 = 5n2 .

6.  CONCLUSION

The results are summarized in Table II.

2.25n/4

 j=0.4n

n/4



Table II:
Comparison

As can be seen
significant savings

have been achieved. To assess this results we are developing parametrized  VHDL
models of these architectures. Currently, we have modeled a rotation mode
standard radix-2 redundant addition scheme with full length datapaths and all
iterations and a radix-2 architecture with reduced x- and y- datapaths according to
section 4.1 and a z-path containing about n/3 iterations and the parallel
prediction. These architectures have been verified by extensive simulation and
synthesized for an external wordlength of 16 bit and mapped onto a 1.0µ CMOS
standard cell design.
The overall area reduction obtained is 20%. It should be noted that this result has
been achieved at the first run and no optimized library for the improved RBA’s
was available.  We expect further reductions by refining the model and the library.
The improvements are valid for implementations in both correcting iteration and
absolute value architectures
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