
Rapid Prototyping with Reconfigurable Hardware for
Embedded Hard Real-Time Systems ∗∗∗∗

Frank Golatowski, Jens Hildebrandt, Dirk Timmermann
{gol, hil}@e-technik.uni-rostock.de

University of Rostock
Department of Electrical Engineering and Information Technology

Institute of Applied Microelectronics and Computer Science
Richard-Wagner-Str. 31

18119 Rostock- Warnemünde
Germany

∗ This work is supported with funds of the Deutsche
Forschungsgemeinschaft within the priority program "Rapid
Prototyping for Integrated Control Systems with Hard Real-
Time Constraints"

Abstract: This paper describes a rapid prototyping
system for the design and development of hard real
time systems. The main focus of this rapid prototyping
system is on scheduling algorithms. Issues of their
implementation including hardware solutions will be
considered. The contributions of this work include: 1.
General scheduling analysis using an extendable
scheduling analyzer 2. Description of a
reconfigurable scheduling coprocessor 3. First
performance evaluation and comparison of two
prototype variants. One scheduling algorithm
implemented in hardware represents a solution for
the threshing problem of least laxity scheduling.

1. Introduction
Scheduling analysis is often used to ensure that all
tasks running on a system will meet their deadlines.
Much work has been reported in this field [1].
Most of it deals with fixed priority systems (FPS).
Dynamic priority systems (DPS) suffer from their
disadvantages in terms of overload behavior and
computational effort [2, 3]. Thus DPS are rarely used
in commercial operating systems despite their ability
to gain a much better utilization than FPS.
In real real-time systems several factors have to be
considered like scheduling or interrupt latencies.
They cause the utilization available for real-time
applications to be below the theoretical possible
value. Especially on-line scheduling algorithms
require an immense computation effort at schedule
time.
One way to solve this problem is an implementation
of the scheduling algorithm in dedicated hardware.
The SPRING-scheduling coprocessor [7] and the
Real-Time Kernel Coprocessor RTU [6] are examples
of this approach.
In this paper we present our work towards a rapid
prototyping system for reconfigurable hardware that
makes the development of coprocessors for embedded

real-time systems easier and faster. The main focus of
this work is on reducing the big impact of scheduling
on system overhead especially when using dynamic
scheduling algorithms.
We prefer a hardware/software co-design in which we
implement only those functions or subfunctions of the
kernel in a coprocessor which provide a considerable
speed-up through execution in hardware while the
rest of the operating system is software. This means
that the execution time of a certain hardware function
plus the extra time needed for communication
between the operating system and the coprocessor has
to be much smaller than the software-only execution
time so that it is worth the cost of extra hardware.
Therefore an analysis of a given real-time system and
of the task set to be run has to be done as well as an
analysis of the coprocessor that could be used.
This paper is organized as follows. First we describe
an extendable scheduling analyzer as a part of the
rapid prototyping process. Thereafter we report the
design of a reconfigurable scheduling coprocessor
and first results of a performance evaluation.

2. Using an extendable Scheduling Analyzer
Our WindowsNT based scheduling analyzer includes
well known scheduling analysis and algorithms
(dynamic and fixed priority) for uniprocessor systems
and resource protocols. Until now the following
scheduling algorithms and appropriate scheduling
analysis are integrated (Figure 1): preemptive priority
based (PRIO), rate-monotonic (RMS), deadline-
monotonic (DMS), earliest deadline first (EDF),
earliest deadline late (EDL), preemptive and non-
preemptive least-laxity first scheduling (LL). The
scheduling analyzer is extendable with user defined
(USER) scheduling analysis by writing a new
Windows-DLL (dynamic link library). This DLL
consists of an interface and the appropriate empty
wrapper functions.



Scheduling Analyzer

Feasibility Visualization

Scheduling Algortihms
static dynamic

DMSPRIO RMS

IPC

USERFIFO EDF LL1 EDL

Periodics Non-Periodics

aperio-
dics

spora-
dics

PI
PCP
IPCP
SRP

DBG
DDS
DSS
TBS
VBS

Periodics Non-Periodcs

spora-
dics

aperio-
dics

SRP
DCP

IPC

LL2

User Interface

BG
PL
DS
SS

Figure 1: Components of an extendable
scheduling analyzer

The specification is done according to [5] by
specifying process and resource tables. Both periodic
and non-periodic processes (sporadics, aperiodics) are
treated. The usage of servers (background (BG),
polling (PL), deferrable (DS), sporadic (SS) for static
priority systems and the dynamic server variants
(dynamic background (DBG), deadline deferrable
(DDS), dynamic sporadic (DSS) ) or total bandwidth
servers (TBS, VBS) for dynamic priority systems to
handle non-regular events is possible. In addition
interprocess communication protocols like priority
inversion (PI), priority ceiling protocol (PCP), instant
priority ceiling protocol (IPCP), stack resource
protocol (SRP) and dynamic ceiling protocol (DCP)
are supported. As an example we have integrated
analysis shown in [10] in an own USER-DLL. The
scheduling analyzer is an interactive tool with a
powerful window based frontend, specification editor
and integrated help system. Also factors affecting the
real behavior like jitter, different priority levels,
scheduling overhead, system timer may be taken into
account.
The scheduling analyzer supports a database
interface. This database contains real numbers
measured in real systems for example execution times
of system calls, fine-grained system times and
information of the system (used RTOS and platform).
The database has a standard interface (ODBC, SQL)
and can also be integrated into an intranet.
In the context of this work we use the scheduling
analyzer to decide whether or not it is necessary or
possible to use dynamic priority systems. We will
concentrate on least laxity first scheduling here.

3. Reconfigurable Scheduling Coprocessor
A main part of the rapid prototyping system is a
reconfigurable scheduling coprocessor. It will help
minimizing system overhead in hard real time
systems using dynamic scheduling algorithm like

earliest-deadline-first (EDF) or least-laxity-first
(LLF). This coprocessor makes it possible to use
scheduling algorithms that are to time consuming if
implemented in software.
Our aim is not to build the entire scheduler in
hardware but only those parts which promise to
achieve a significant speedup when implemented in a
coprocessor. In general these will be computations
that can be done by a dedicated hardware device in a
fully parallel manner and with higher speed.
We are developing a scheduling coprocessor design
that does the entire online computation for a dynamic
scheduling algorithm and gives back the identification
number of the task that has to be executed next. All
other functionality of the scheduler like context
switch, event registration or handling of resource
requests is implemented in software. This is apassive
scheduling coprocessor. It starts computation only
after being triggered by the host and has to be
provided with information about changing task states
or task parameters.
The design of the coprocessor consists of a set of
identical functional blocks. Each of them represents a
single task and contains several parameters and status
information. Inside these blocks a value is computed.
Depending on this result the next task to be executed
is determined. Note: the meaning of these values is
determined by the scheduling algorithm used and thus
differs in different coprocessor implementations. The
comparison of all these values is done in a separate
module that produces the ID number of the task block
that has the smallest/biggest computed value,
depending on the scheduling algorithm used.

task block

task block

task block

0

1

n

address

decoder

co
m

pa
ra

to
r

data- and control lines

addr.

S0(t)

S1(t)

Sn(t)

min/max
S(t)

da
ta

in
te

rf
ac

e

start signal

Figure 2: Fundamental design of the Scheduling
coprocessor

This ID number appears at the output of the
coprocessor and signalizes the host processor that the
next task to be executed is the one that is represented
by that number.



This fundamental design of a scheduling coprocessor
(Figure 2) is highly reconfigurable as it allows the
implementation of nearly every scheduling algorithm
that is based on a comparison of task parameters. A
first prototype of that coprocessor implements the
LLF-algorithm. This algorithm decides which task to
execute next by computing the slack or laxity, i.e. the
difference between the time left until the task
deadline D(t) and its remaining computation time
C(t). The task with the smallest slackS(t) is executed
first. The main advantage of this algorithm is that a
task going to miss its deadline is recognized prior to
that deadline as the slack becomes a negative value.
Thus measures to handle possible errors and to
prevent any damage can be taken before the deadline
is reached.
At initialization time the worst case computation time
C and the deadlineD of each task are stored in its task
block via the data interface of the coprocessor.
Furthermore there is a flag register inside the task
block that memorizes the status of the task which can
be suspended, waiting, readyor running. The
prototype device is a synchronous design driven by a
global system clock. The computation of the task to
run next is triggered by a time base clock. The period
of this clock determines the minimum time interval
between two task switches. TheC- andD- parameters
are measured in multiples of that time enabling the
computation of currentD(t) and C(t) values at
scheduling time in simple decrement-by-one
operations. These operations are executed depending
on the tasks status as the remaining time until
deadline gets smaller every time base clock tick for
all tasks being not suspended while the computation
time left changes only for running tasks.

intermediate result (i-1)

final result

S0-n(t).i

intermediate result (i)

OR

Lo
ad

if
no

t
"1

11
..1

1"

C
le

ar
if

ne
w

co
m

pa
ris

on

S
0(

t)
.i

S
2(

t)
.i

S
n(

t)
.i

S
1(

t)
.i

1 1 1 0 1

0 1 2 nx

lo
ad

if
co

m
pa

ris
on

fin
is

he
d

Figure 3 Serial comparator. Task with smallest
S-value is marked with ‘0’ at the output

The comparison of the slack values of all tasks
currently being ready to run is done bit by bit in a
serial comparator (Figure 3).
This approach has the advantage that the time
required for comparing all the values is limited to a
fixed number of system clock periods. This number
equals the number of bits in the parameterS(t).
Furthermore, since the time needed to compute slack
values is constant the whole time from triggering the
coprocessor until the result is valid on its output is
constant too, independent of the number of tasks in
the real time system. This guarantees the coprocessor
to be deterministic.
Tests and simulations of this prototype revealed that
the design performs well but suffers from threshing, a
main disadvantage of LLF-algorithm. Threshing
implies a situation in which two or more tasks are
executed alternating for one time base period each
after having all the smallest slack at one certain
moment. This can cause a task in a feasible system to
miss its deadline due to a loss of time in the great
number of context switches during a threshing
situation.
In order to solve this problem while preserving the
advantages of the LLF-algorithm a new scheduling
method was developed and implemented in the
coprocessor. It is based on least-laxity–first-
scheduling but eliminates threshing. In this algorithm
all tasks that have the same – smallest – slack like the
one that was just chosen to run are locked out from
being executed. They are still taking part in the
comparison of slack values until the currently
running task ends or until there is a task ready to run
with a slack even smaller than that of the locked out
tasks.

T0
S0(t)

T1
S1(t)

T2
S2(t)

T3
S3(t)

t

T0: C0=3, D0=12, S0(0) = 9

T1: C1=4, D1=13, S1(0) = 9

T2: C2=5, D2=14, S2(0) = 9

T3: C3=2, D3=6, S3(0) = 4

least-laxity scheduling
without threshing

- locked by T0
- locked by T1
- running

0 2 4 6 8 10 12 14 16

9 9 8 7 6 5 4 3 2 1 1

8 7 6 5 5 5 5 5

8 7 6 5 4 3 2 1 1 1 0 0 0 0

4 4 4

D0

D1

D2

D3

- process gets ready to run

- process ends

Figure 4 Example for LLF without threshing



The latter condition allows tasks that get ready to run
only after the currently being executed task entered
the staterunning to claim the processor. In non-
preemptive systems these tasks would have to wait at
least until the running task quits thus probably
missing their deadlines. In this new algorithm the
tasks that would thresh in normal LLF-scheduling are
executed one after another. The order of execution is
determined by the tasks deadlines. Of all the tasks
that have the smallest slack the one is chosen that has
the earliest deadline. That task locks out the other
tasks until it ends or until it is preempted. (Figure 4).

4. Performance Evaluation
The scheduling coprocessor design is described in
VHDL thus guaranteeing technology independence.
Two prototypes have been synthesized in field
programmable gate arrays (FPGA). One of them uses
normal LLF-scheduling while in the other one our
new scheduling algorithm is implemented.
The latter needs nearly twice as much time as the
least-laxity-first scheduling coprocessor for
determination of the next task to run. This is caused
by an extra comparison of deadlines that has to be
done.
At current stage of development the coprocessor
using the enhanced LLF-algorithm needs 1µs to
deliver a result for a set of 32 tasks with a parameter
resolution of 16 bit. As mentioned above the
coprocessor using standard least-laxity-first algorithm
is much faster. It finishes its computations in 0.53 µs.
The next steps in the development of the coprocessor
are aimed on further improvement of design speed
and size as well as on integration of coprocessor
supported scheduling in standard real-time operating
systems.

5. Conclusion
This paper has described a rapid prototyping system
currently under development. The reconfigurable
scheduling coprocessor developed in this context
implements dynamic priority scheduling algorithms.
This allows even computation intensive algorithms to
be used in real systems. Next steps will concentrate
on robust algorithms like [2, 8]. The final goal is to
develop a framework that simplifies creation of
scheduling coprocessors and shortens design cycle
time.

Bibliography
[1] N. Audsley et al., "Fixed Priority Pre-

emptive Scheduling: An Historical
Perspective," Journal of Real-Time
Systems, vol. 8, pp. 173-198, 1995

[2] S. Baruah, J. R. Haritsa, "Scheduling for
Overload in Real-Time Systems,"IEEE
Transactions on Computers, vol. 46, No. 9,
pp. 1034-1039, 1996

[3] H. Chetto, M. Chetto, "Some Results of the
Earliest Deadline Scheduling Algorithm,"
IEEE Transactions on Software
Engineering, vol. 15, No. 10, pp. 1261-
1269, 1989

[4] Z. Deng, J. W.-S. Liu and J. Sun,
"Dynamic Scheduling of Hard Real-Time
Applications in Open System
Environment," 17th IEEE Real-Time
Systems Symposium, WIP-Proc., pp. 47-50,
1996

[5] M. H. Klein et al., A Practitioner’s
Handbook for Real-Time Analysis.
Carnegie Mellon University, Software
Engineering Institute, Kluwer Academic
Publishers, Boston, Dordrecht, London,
1993

[6] Johan Furunäs et al., "Real-time Kernel in
Hardware RTU: A Step Towards
Deterministic and High-Performance Real-
time Systems," Euromicro RTS’96
Workshop, L´Aquila, Italy, pp. 164- 168,
1996

[7] D. Niehaus et al., "The Spring Scheduling
Co-Processor,"Proc. 14th IEEE Real-Time
System Symposium, Raleigh-Durham,
North Carolina, pp. 106-111, 1993

[8] M. Spuri, G. Buttazzo, F. Sensini, "Robust
Aperiodic Scheduling under Dynamic
Priority Systems,"Proc. 16th IEEE Real-
Time Systems Symposium, Pisa, Italy, pp.
210-219, 1995

[9] J. A. Stankovic, "Real-Time and
Embedded Systems," In: Allen B. Tucker
(Ed.), CRC Computer Science and
Engineering Handbook. CRC Press,
pp. 1709-1724, 1997

[10] K. Tindell, "An Extendible Approach for
Analysing Fixed Priority Hard Real-Time
Tasks," Technical Report YCS-91-189,
Department of CS, University of York,
1994

[11] B. K. Kim, K. G. Shin, "Scaleable
Hardware EDF Scheduler for ATM
Network," Proc. 18th IEEE Real-Time
Systems Symposium, San Francisco, CA,
1997


