
CREMA: A Parallel Hardware Raytracing Machine

Ulf Ochsenfahrt and Ralf Salomon

Faculty of Computer Science and Electrical Engineering

University of Rostock, 18051 Rostock, Germany

{ulf.ochsenfahrt,ralf.salomon}@uni-rostock.de

Abstract—A raytracer calculates how a camera would observe
a potentially complex scene consisting of numerous objects and
light sources. If all the objects are modeled by n primitives, e.g.,
triangles, the runtime of a software raytracer scales at least log-
arithmically. This scaling behavior effectively imposes limitations
on the scene’s complexity, its size, and the raytracer’s real-time
capabilities. As an alternative, this paper proposes a parallel
hardware raytracing machine. A prototypical implementation on
a field-programmable gate array, as offered by markets today,
validates that this machine achieves rendering in constant time,
regardless of both the scene’s size and its complexity.

I. INTRODUCTION

Rendering is a well-established technique to calculate how a

camera would observe a scene consisting of several objects and

light sources. Rather than solving complex equations exactly,

virtually all state-of-the-art rendering machines employ ap-

proximation techniques, which is raytracing [1] in most cases.

A raytracer, as the name suggest, shoots rays into the scene.

In so doing, it traces their progress, and considers secondary

rays in case they touch objects or run into light sources.

In order to be efficient, a real-time raytracer assumes the

following two simplifications: (1) it models all the present

objects by a total of n primitives, which are simple triangles

in most cases [2], and (2) light sources have the size of a

mathematical point. Furthermore, it uses a simple and efficient

shading model: in case a ray hits a primitive, this ray spawns at

least three secondary rays to model the physical effects called

reflection, refraction, and shadow.

A software raytracer spends most of its processing time on

the calculation of potential intersections of a ray with any of

the n primitives. A naive implementation considers all primi-

tives leading to a computational complexity of O(n) per ray.
In order to relieve this bottleneck, previous research has de-

veloped acceleration data structures, such as regular grids [3],

kd-trees [4], and bounding box hierarchies [5], to mention but

a few. These data structures provide a criterion that allows the

raytracer to stop the testing process. The pertinent literature [6]

suggests that these enhancements reduce the rendering time

to about Ω(logn) per ray under certain favorable conditions.
However, previous research does not provide any performance

guarantees or necessary preconditions. That is, it might as well

happen that a scene of a certain complexity or size still requires

O(n) intersection tests per ray.
The time bound Ω(logn) mentioned above is notorious for
single-processor software solutions [7], since they can access

their memory and perform intersection tests only sequentially.

To go beyond these limitations, Section II proposes a new

hardware design called Constant-Time Raytracing with Em-

bedded Memory Architecture (CREMA). A key concept of

CREMA is that it employs a tiny processor and a few data

cells for every primitive. These n nano processors perform all

intersection tests in parallel, which requires exactly one macro

cycle. Hence, the computational complexity shrinks to O(1).

In order to validate the feasibility of the proposed architec-

ture, Section III discusses a prototypical implementation. Even

though the current implementation is clocked at 28 MHz, it

renders images of 256x128 pixels in real-time at 13 frames per

second. Finally, Section IV concludes with a brief discussion.

II. CREMA: A PARALLEL HARDWARE RENDERER

The canonical setup of a rendering machine is depicted in

Figure 1. In this approach, the three processes ray buffer,

geometry calculation, and shading model the appearance of

the scene’s objects and the effects of its light sources. In this

respect, this paper is mainly concerned with the realization

of the geometry calculation process. It consists of a large

set of simple nano processors as well as a tree-shaped set of

selectors. The result of this processing queue is that triangle

that is intersected closest to the origin of the ray under

consideration. Provided that this architecture features as least

one processor for each primitive (see also Subsection II-C for

relaxed conditions), this architecture processes all the required

intersection tests simultaneously. As a result, the architecture

yields one result per time step, called macro cycle, leading to

a computational complexity of O(1) per ray.

It should be mentioned here that CREMA’s design draws

some inspiration from an early approach [8] that was discarded

at that time. The remainder of this section describes the design

of the nano processors as well as the intersectors in full

detail, and wraps up with a few remarks on the required

infrastructure, which is also implemented on the same chip.

A. Design of the Nano Processor

For every incoming ray, each of the nano processors cal-

culates whether or not the ray hits its stored triangle. In case

of an intersection, the nano processor further calculates the

distance of the intersection to the ray’s starting point.

The basic idea of the intersection test by Segura and Feito

[9] is illustrated in Figure 2: Taking the two ray points P and

Q as well as the three triangle’s vertices A,B, and C, the test
calculates the signs of the three tetraeder’s volumes PQAB,

PQBC, and PQCA. The ray PQ hits the triangle ABC if all



Geometry

Ray

Light SourceCamera
Scene

Geometry

Calculation

Detail

View

Functional

Model

DisplayShadingRay

Buffer
Camera Grid

Raytracing

nano processor

nano processor

nano processor

distance

selector

selector

selector

nano processor

storage

triangle

Ray

¡

distance
min

muxB
u
ff
er

Test

Intersection

Fig. 1. The CREMA architecture realizes the geometry process as a grid of nano hardware processors, which pass their results to a selector hierarchy. The
nano processors and selectors in turn consist of very simple storage and calculation modules.

signs are equal. The volume equation for the first tetraeder is:

sign(V (P,Q,A,B)) = sign

∣

∣

∣

∣

∣

∣

∣

∣

Px Py Pz 1

Qx Qy Qz 1

Ax Ay Az 1

Bx By Bz 1

∣

∣

∣

∣

∣

∣

∣

∣

, (1)

which can be easily evaluated with multipliers and adders.

A

QP
B

C

P
Q

A

C

B
A

C

B

Q
P

B

C

A

Q
P

PQAB

PQBC

PQCA

Fig. 2. The ray PQ, the triangle ABC, and the three tetraeders PQAB,
PQCA, and PQBC. If all three tetraeder’s volumes have the same sign, the
ray intersects the triangle.

In case of an intersection, the nano processor has to further

calculate the distance of its intersection to the ray’s starting

point P. Generally, the distance t at which the ray hits the

triangle can be calculated from the plane and ray equations.

With A denoting one of the triangle’s vertices, N denoting the

triangle normal, and P and Q denoting distinct points on the

ray, the distance can be determined as follows:

(X−A)∗N = 0 X = P+ t ∗ (Q−P),

thus arriving at the distance equation

t =
NA−NP

NQ−NP
. (2)

B. Design of the Selector

After all nano processors have performed their intersection

tests and have done - as far as necessary - their distance

calculations, the selection hierarchy is implemented as a

binary tree of simple comparator/multiplexer modules. That

is, a selector compares two inputs ti and t j according to

Equation (2), and sets its output o=min{ti,t j} to the minimum
of the inputs. The comparison can be done in two different

ways: either the selector can compare distances itself. In that

case, the nano processors would have to perform the division.



Or, the selectors can use the enumerator and denominator of

Equation (2) directly as follows:

ti =
NiAi−NiP

NiQ−NiP
=
ai

bi
, t j =

N jA j−N jP

N jQ−N jP
=
a j

b j
.

The case bi,b j > 0 is then handled as follows:

ti < t j ⇔

∣

∣

∣

∣

ai bi
a j b j

∣

∣

∣

∣

< 0 . (3)

This can be represented as the sign of the determinant of the

matrix of ti and t j. If bi,b j > 0 and the sign of the determinant
is negative, then ti < t j and the i

th triangle is hit before the jth

triangle; vice versa if the sign is positive. The generalization to

all other cases is straightforward. If one of bi or b j is negative,

the selector has to flip the sign before the test.

Due to their structure, equations (1), (2), and (3) can all

be handled by the same multiply-and-accumulate logic, which

greatly reduces the number of required logic elements.

C. Enhancements

CREMA’s basic design can be improved by various en-

hancements. Two of them are described here, since they reduce

the required chip area and accelerate the runtime performance.

The first enhancement consists of splitting the intersection

and distance calculations into two stages, and storing common

subexpressions in the nano processor’s local memory. For

example, in the distance equation (2) t = (NA−NP)/(NQ−
NP) the nano processors can first pre-calculate all terms that
involve the ray’s starting point P, i.e., NA, NP, and NA−
NP. Afterwards, the nano processors perform all operations

involving the ray’s second point Q. Similarly, the terms of the

volume equation (1) can be split into two subsequent phases.

This optimization requires more local memory cells for storing

common subexpressions, but it improves the rendering time by

more than a factor of two for rays with a common origin; this

applies at least to all rays starting at the camera.

The second enhancement lets every nano processor host a

pair of triangles that share an edge. This step is generally

applicable, since according to the Euler-Poincaré Formula

[10], all usual geometries have an even number of triangles.

Furthermore, Peterson’s graph theorem [11] provides a guide-

line of how an object’s primitives should be grouped into pairs.

This second enhancement has the following three advantages:

(1) it saves memory space, as only four as opposed to six

points are necessary to describe two triangles, (2) it saves

processing time, because it reduces the number of necessary

calculations, and (3) it significantly saves silicon area, since it

reduces the number of selectors by a factor of two.

D. The Infrastructure

CREMA’s infrastructure consists of the four modules cam-

era, ray buffer, shading, and display (Figure 1), which can

be found in all rendering machines in some flavor. Each of

these processes is mapped onto a distinct hardware module.

The camera module generates rays and feeds each of them to

the ray buffer. At the same time, the ray buffer distributes

a selected ray to all of the the nano processors, which

forward their results to a hierarchy of selectors. These selectors

propagate their selections from one level to the next, resulting

in one distinct result, which is passed on to the shading

module. All hardware modules work simultaneously and their

data exchanges are clocked. The shading module is the only

exception, since it must be able to pass multiple rays to the

ray buffer within one meta cycle. CREMA utilizes additional

hardware to setup and modify the scene between frames. As

in all software raytracers, these hardware modules still work

sequentially.

E. Summary

This section has introduced the core concepts of CREMA.

Its main property is a grid of very small, rather rudimentary,

nano processors, which all simultaneously determine whether

or not the current ray hits their respective triangles. Then, a

binary tree of selection modules determines the triangle that is

closest to the ray’s origin. After an initial delay of τ ∼ log2 n,
CREMA yields one result per macro cycle, since the pro-

cessing of all intersection tests is done in parallel. From an

abstract architectural perspective, the approach presented here

is a massively parallel single instruction multiple data (SIMD)

machine, which, in a sense, corresponds to developments in

the area of ultra-high performance computing [12], [13].

III. PROTOTYPICAL IMPLEMENTATION

From a technical point of view, CREMA is best imple-

mented as an ASIC with embedded DRAM. ASIC designs,

however, are way too expensive for University research. There-

fore this paper uses a much cheaper field-programmable gate

array (FPGA) prototype that is based on a Xilinx Virtex-E

1000 chip. Even though the number of triangles is severely

limited due to the small FPGA size, the prototype allows for

the validation of the basic concepts.

A. Latency and Throughput

Ray

1 log2

n

2

Selector
NP

NP

NP

NP
Selector

Selector

Fig. 3. In CREMA, latency of the nano processors (NP) is constant and
independent of their actual number, since they all work in parallel. The
selectors then add a logarithmic latency, since they are organized as a tree.

Latency is defined as the time the architecture requires to

fully process every single ray. In software, the latency τ is

strongly linked to the throughput p = 1/τ . For example, if

a ray takes τ(n) = Ω(logn) time for being processed, the
maximal throughput is p(n) = O(1/ logn) rays per time unit.
The parallel raytracer CREMA yields much different per-

formance figures: According to Figure 3, both the nano



processors and the selection hierarchy impose delays Θ(1) and
Θ(log2 n/2) leading to an overall delay τ(n) = Θ(logn).

In CREMA’s geometry processing module, all operations

are pipelined. That is, the nano processors perform a complete

ray-triangle intersection test, and simultaneously, all selectors

do the comparisons and forward their results to the next layer,

and thus yields one result (pixel value) per macro cycle. Due

to internal clocking, one macro cycle requires 64 clock cycles.

The prototype renders images of 256x128 pixels and di-

rectly outputs them to a VGA monitor. Even with a clock rate

as low as 28 MHz, the prototype renders 13 frames per second.

It renders only primary rays with simple shading: either depth-

based coloring, or shading based on one light source and an

approximation of the Banks reflection model.

B. Chip Area

In a software architecture, both CPU and memory require

silicon area. The CPU requires a constant amount of silicon,

and can process scenes of arbitrary size and complexity.

The memory size, on the other hand, is dependent on the

scene complexity, since n triangles require at least Ω(n) cells.
In addition, the software raytracer’s acceleration structures

consume Θ(n) additional cells in the best possible case.

CREMA requires silicon area for the infrastructure, the nano

processors, and the selectors. Since the CPU is much simpler

than in the traditional architecture, the total silicon area mainly

amounts for the nano processors and selectors. For n triangles,

the architecture has to employ n/2 nano processors and n/2−1
selectors. The consumed silicon area thus scales with Θ(n), as
in the software approach.

IV. CONCLUSION

This paper has argued that the runtime of software ray-

tracers is bound to the sequential nature of conventional

CPU/memory-based architectures. Even though many accel-

eration data structures are able to significantly speed up

raytracers under certain favorable conditions, current research

cannot give any performance guarantees. As an alternative,

this paper has proposed a new parallel hardware rendering

architecture, called CREMA, that processes all the time con-

suming rendering operations fully in parallel; regardless of the

scene’s complexity and size, CREMA requires only constant

processing time O(1) per ray.

Since ASIC designs are way too expensive for regular Uni-

versity research, this paper has also presented a prototypical

implementation that is based on the Xilinx Virtex-E 1000 field-

programmable gate array. This prototype is clocked at 28 MHz

and yields 256x128 pixels at a rate of 13 images per second.

Initiated by the prototype, future research will try to further

simplify the intersection tests in terms of hardware resources.

Furthermore, future research will explore to what extent the

parallel hardware raytracer would benefit from the incorpo-

ration of traditional acceleration data structures. The ultimate

goal will be the development of an ASIC design that renders

practically relevant scenes and image sizes in real time.

ACKNOWLEDGEMENTS

The authors gratefully thank Ralf Joost for his numerous

comments and fruitful discussions. Particular thanks are also

due to Prof. Dirk Timmermann for his continuous support. Part

of this research has been supported by a fellowship from the

Landesgraduiertenförderung Mecklenburg-Vorpommern. Part

of this research has been supported by the German Research

Foundation (Deutsche Forschungsgemeinschaft), as part of the

MuSAMA Research Training Group, grant 1424.

REFERENCES

[1] T. Whitted, “An Improved Illumination Model for Shaded Display,”
Communications of the ACM, vol. 23, no. 6, pp. 343–349, June 1980.

[2] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek,
“Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip,” in Proc.
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware. Eurographics Association, August 2004.
[3] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray Tracing
Animated Scenes using Coherent Grid Traversal,” ACM Transactions on
Graphics, 2006, (Proceedings of ACM SIGGRAPH 2006, to appear).

[4] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing
algorithm,” ACM Trans. Graph., vol. 24, no. 3, pp. 1176–1185, 2005.

[5] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies (revised version),” Tech-
nical Report, SCI Institute, University of Utah, No UUSCI-2006-023,
2006.

[6] V. Havran, “Heuristic ray shooting algorithms,” Ph.D.
dissertation, Czech Technical University, Prague, Czech, 2000,
http://www.cgg.cvut.cz/˜havran/phdthesis.html.

[7] L. Szirmay-Kalos, V. Havran, B. Balázs, and L. Szécsi, “On the
Efficiency of Ray-shooting Acceleration Schemes,” in Proceedings of
the 18th Spring Conference on Computer Graphics. ACM Press, 2002,
pp. 97–106.

[8] M. K. Ullner, “Parallel Machines for Computer Graphics,” Ph.D. dis-
sertation, Cal. Inst. of Technology, Passadena, California, USA, 1983.

[9] R. J. Segura and F. R. Feito, “An Algorithm for Intersection Segment-
Polygon in 3D,” Comp. & Graphics, vol. 22, no. 5, pp. 587–592, 1998.

[10] H. S. M. Coxeter, Regular Polytopes, 3rd ed. Dover Publications, June
1973, ch. 9, pp. 165–172, Poincaré’s Proof of Euler’s Formula. [Online].
Available: http://mathworld.wolfram.com/PoincareFormula.html

[11] R. Diestel, Graph Theory. Springer-Verlag Heidelberg, 2005.
[12] Z. Baker and V. Prasanna, “Performance modeling and interpretive

simulation of pim architectures and applictions,” Euro-Par 2002., 2002.
[Online]. Available: citeseer.ist.psu.edu/baker02performance.html

[13] S. Tomashot, “An Embedded DRAM Approach,” 2003, IBM Corpora-
tion. http://www-306.ibm.com/.


