
Time Coding Output Neurons in Digital Artificial

Neural Networks

Ralf Joost, Ralf Salomon

Institute of Applied Microelectronics and Computer Engineering, University of Rostock

Rostock, Germany

ralf.joost@uni-rostock.de

Abstract-Previous research has proposed several platforms for

the direct hardware implementation of neural networks. Most of

these platforms employ a small number of special-purpose

processors that emulate a given number of neurons. By contrast,

this paper proposes a light-weight hardware model, called time

coded output (TiCO) neuron, which codes its internal activation

as the duration of its output pulses. Since the implementation of

such a neuron requires only about 200 logical elements, standard

state-of-the-art field-programmable gate arrays may host several

hundreds of neurons on a single chip. Due to its output coding

and its low footprint, TiCO neurons are particularly suited for

the usage in embedded systems.

Keywords: neuron design, hardware implementation, FPGA,

pulse width modulation

I. INTRODUCTION

No doubt, neural networks of various sorts are
indispensable tools in research and development. From an
application point of view, the advantages of artificial neural
networks are their massively parallel processing nature as well
as their capabilities to learn from examples and to generalize
previously unseen data. Last but not least, artificial neural
networks are able to provide parameterizable and very compact
models of complex, high-dimensional, multi-modal functions.

In way contrast to their biological role models, most
artificial neural networks are implemented on traditional, rather
serial processors, such as PCs and micro controllers; parallel
processing is a rather secondary property that emerges if the
networks is partitioned across a few “regular” processing cores.
In terms of processing speed, a PC-based implementation
constitutes a significant computational bottleneck: if a
multilayer backpropagation network would consist of 10,000
neurons, even a 10 GHz processor would be able to calculate
only about 20 forward paths per second.

In light of the discussion presented above, the use of
dedicated hardware platforms for artificial neural networks
seems rather attractive particularly for high-performance
applications. Section II provides a brief overview of previous
research in that area. This review reveals two prevailing trends:
first, analog hardware with limited computational precision and
scaling properties, and second, coarse-grained multi-core
platforms that employ a moderate number of heavy-weight,
serialized multipliers.

Hardware chips known as field-programmable gate arrays
(FPGAs) are particularly interesting for neural network
implementations: the (application) programmer can configure,
place, and interconnect all the various logical gates at his or her
own disposal. With an FPGA, a programmer can follow the
traditional approach of constructing hardware multipliers and
(application-specific) ALUs. However, FPGAs also allow for
any interconnection, and thus for any form of (digital)
hardware implementation.

Thus, Section III proposes an alternative implementation
approach for artificial neurons, called the time coded output
(TiCO) neurons: rather than coding a neuron’s activation level
as a single floating-point value, TiCO neurons communicate
their signals with a duty cycle that is proportional to a neuron's
internal activation state. Because of this property, TiCO
neurons are particularly suited in embedded systems, which are
normally tightly coupled with some physical processes.

Practical experiments have demonstrated the feasibility of
implementing TiCO neurons on standard FPGAs. Section IV
provides all the technical details and algorithms used in these
experiments. Then, Section V summarizes the achieved results,
which indicate that off-the-shelf FPGAs allow for
parameterizable and dynamically modifiable duty cycles on
oscillating signals. Section VI discusses the achieved results in
terms of performance, resource usage, and application issues.

The TiCO neurons proposed in this paper are a first step
towards an alternative neuronal network implementation,
which tries to preserve the inherent parallel processing
capability of most of the existing artificial network models.
Section VII discusses some of the remaining research issues,
and outlines the next steps of future research.

II. BACKGROUND: HARDWARE IMPLEMENTATION

PLATFORMS

A. Digital Implementations of ANNs

Most neural network models process their inputs in several

stages (see, also, Fig. 1). Multilayer perceptrons [14], for

example, first calculate their net input net according to the

assigned input values Ij and link weights wj for all n inputs

 ∑

 . (1)

Then, they translate their net-input to the output value o by

using some nonlinear transfer function, such as the logistic

function



  

or the hyperbolic tangent

  

In the most straight-forward way, a digital implementation
employs a set of heavy-weight processing units. Fig. 2 shows a
generic hardware architecture of a perceptron. As can be seen,
the artificial neuron consists of three stages: (1) input-weight-
multiplication, (2) accumulation, and (3) output value
computation. The size of the shown weight storage RAM
depends on both the number of connected inputs and the
chosen precision. Previous research [2] has recommended that
at least a 16-bit precision should be used. Thus, a 16-bit
hardware multiplier is necessary to calculate a 32-bit partial
product per clock cycle. The result is stored in a temporary
product storage and accumulated in the subsequent clock cycle.
Given n input values, the accumulation of all weighted input
values requires n clock cycles. Once the final sum is calculated,
the output value of the sum storage register addresses an entry
in the activation function look-up table (LUT). This means that
the activation function is pre-calculated for a given input range
and a given precision. Muthuramalingam et al. [3] have present
an example for this approach using an FPGA-implemented
neural network for space vector modulation. According to
Muthuramalingam et al., the main difficulties are the trade-off
between parallelism and resource requirements as well as the
intended precision. They indicate that the utilization of look-up
tables for the activation function saves approximately 70
percent of resources compared to a full computation approach.
However, a three-input neuron still requires 25 clock cycles,
and more than 560 logic elements1 to do one output calculation.

For simple threshold neurons, previous research [4] has
proposed an alternative that relies on AND and OR gates. The
main benefit of this approach is that it results in a rather simple
hardware structure, whereas a disadvantage can be seen in the

1 In this paper, a logic element is defined as a combination of a four-bit

input look-up table and a flip flop. The term “slice”, originally used in the

referenced literature, is vendor specific (XILINX) and calculated as two logic

elements. Since the introduction of the Virtex 5 FPGA family, a “slice”

contains four logic elements.

limited number of input values. According to the authors, the
complexity of their approach grows exponentially in the
number of input bits, and thus may give preference to the
classical computation approach.

The usage of 16-bit floating-point values has aready been
investigated by previous research [5]. Unfortunately, the
implementation of a 2-2-1 network for the well-known XOR-
problem requires already approximately 9800 logic elements.

Further examples for FPGA-implemented neural networks
can be found in the pertinent literature, where particular interest
is given to the domain of industrial control applications [6, 7].

B. Analog implementations:

Some existing analog implementations avoid digital

processing units by operating all the CMOS transistors in their

non-linear, non-saturation regime. On the one hand, analog

systems offer the placement of a large number of high-speed

neurons in silicon. On the other hand, analog circuits are

known to suffer from noise, interference and process

variations.

Stüpmann [11] has presented a concept and a detailed

layout description for an analog integrated circuit,

implementing a neural network capable of learning [11].

Weight multiplications as well as the sigmoidal activation

function were realized by a Gilbert multiplier. Furthermore,

capacitive elements provided the required weight storage

functionality. However, the design was far from a mass-

production state.

Figueroa et al. [1] have pointed out that in analog circuits

the main issues are nonlinearities in the current-to-voltage

transfer characteristics. To provide a tool for predicting

implementation performance, they have designed an FPGA-

based network emulator in order. The emulation required the

transfer of both analog multipliers and memory cells to the

digital FPGA world. In the end, they used a concept, named

temporal synapse slicing, to keep the number of required

FPGA resources low. Again, mixing the analog behavior of

neurons and digital processing is interfered by the

requirements of the multiplications and transfer functions.

III. THE TICO NEURON

This section presents a different approach for reaching
analog behavior without leaving the digital world. This
approach is named Time Coded Output Neuron (TiCO neuron).

Figure 2. Generic hardware architecture for an FPGA-implementation of a

perceptron

Figure 1. The multilayer perceptron

wi

w0

w1

Ii

I1

I0

O

weight (multiplication)

activation

output

summation

inputs

clk

clk
clk

clk

X

hardware multiply hardware adder

sum storage

activation

function

(LUT)

product storage

weight

storage

(RAM)

input xi

wi
i

D

D

Q

Q
+

This neuron is characterized by the use of the pulse width
modulation to encode analog information on a single bit signal
line.

A. Overview

The goal of the TiCO neuron is to provide a simple, low-
cost implementation variant for artificial neurons. This concept
is illustrated in Fig. 3. The basic idea is to offer neurons that

emit pulses with variable lengths. The pulse length  = f(net) is
proportional to a neuron's activation value, and thus directly
codes for its output state. In other words, a TiCO neuron is a
voltage-controlled oscillator (VCO) in which not the frequency
but the duty cycle is the target.

B. Generating pulses with variing duty cycles

To generate rectangular signals, most integrated circuits
utilize some form of dedicated hardware, such as phase locked
loops or other types of oscillators. The signal’s parameters are

its frequency f, its period T=1/f, and the signal’s duty cycle .

Usually, the duty cycle  =T/2 is half the signal’s period T. In

order to obtain a duty cycle that differs from the value  =T/2,
the designer has two options. The first option would be to
change the properties of the global oscillator, which would be,
however, quite useless, since the duty cycle has to be adapted
for every single neuron on an individual basis. Therefore, the
duty cycle has to be changed within every neuron. This can be
done in the following way: the oscillator signal s(t) is
duplicated to s’(t). This duplicated signal is phase shifted to

s'(t-t). Finally, both signals s(t) and s'(t-t) are combined by

an exclusive-or gate XOR(s(t), s'(t-t)). This procedure is

exemplified in Fig. 4. Valid delay values t are in the range
from 0 to T/2, since other values introduce some form of
unambiguity due to the signal’s periodic behavior. The duty

cycle  =2t is twice as long as the applied delay value t.

C. Delay generation

The pertinent literature offers at least three different
methods to generate delays in integrated circuits. The classical
approach is to use the processing delays of the FPGA’s logic
elements [10]. These delays depend on the FPGA technology,
and are usually in the range of 200 ps to 400 ps. Thus, a delay
chain with a resolution of 200 ps to 400 ps can be obtained by
serially connecting any desired number of logic elements. A
more fine-grained delay chain can be implemented by using the
special-purpose carry path between adjacent logic elements.

This carry path is usually dedicated to fast ripple-carry adders,
and yields a processing delay of approximately 30 ps [17]. It
should be kept in mind, though, that the use of logic elements
as parts of a delay chain implies two disadvantages. First, the
use of logic elements increases the design-size significantly,
slowing down all involved development processes, i.e.,
synthesis, placement, and debugging. Second, logic elements
tend to vary their processing speeds (delays) according to the
exogenous parameters, such as the on-chip temperature and the
on-chip supply voltage setting [12].

Recent research has suggested a third way of generating on-
chip delays. The BOUNCE/X-ORCA architecture [8, 9] is a
high-performance time measurement system that yields a
resolution of better than 10 ps by utilizing the propagation
delays that are imposed by an integrated circuit’s passive
electrical wires. Due to the regular structure of an FPGA, it is
possible to place two logic elements such that the connecting
signal between both exhibits any desired delay. In other words,
increasing the geometrical distance between two logic elements
that are placed on the FPGAs regular grid also increases the
delay between those elements. Only the geometrical size of the
FPGA limits the maximum segment length of a signal wire,
and thus the achievable delay between two logic elements.
However, consecutively connecting multiple instances of these
delay segments again ensures a wide range of achievable
delays. This approach has two benefits: the number of used
hardware resources remains low and the delays are apparently
more stable against temperature changes.

D. Implementing the TiCO neuron

A single TiCO neuron is achieved by connecting a user-
defined number of simple TiCO building blocks as shown in
Fig. 5. In essence, every TiCO building block is able to shift

the incoming oscillator signal by a dedicated delay t.
Furthermore, the neuron’s input vector is used to control
whether a TiCO building block feeds the delayed signal or the

Figure 3. TiCO: the general mode of operation

t0
T

/

TiCO

neuron

Ii

I1

I0

O

output

inputs

output signal:  = f(I0, I1, .. Ii)
oscillator

t0 T

XOR

t0
Tt0-t

t0 T

/

oscilator signal

delayed signal

XOR-ed signal

delay

t

Figure 4. General approach to generate variable duty cycles

un-delayed signal to the next TiCO building block. The
generation of this control signal is performed inside every
single building block by a logic table (LT). The generated
control signal is only valid for that block. Thus, the user may
define different control functions for every block. As a
consequence, a particular input vector may enable the delay of
some building blocks whereas others transfer an un-delayed
signal. In so doing, the entire system of TiCO building blocks
results in an overall phase shift. Finally, the phase-shifted
signal is XOR-ed with the un-shifted original signal, producing
a pulse width modulated signal with a duty cycle of 0% to
100%.

As can be seen in Fig. 5, delays are only imposed on one
channel; the original oscillator signal bypasses all delay stages
and feeds the final XOR. Since already the latency of the
integrated multiplexer introduces a delay to the signal, the
original oscillator signal also has to pass the very same number
of multiplexers to correct this effect. These bypass multiplexers
are not shown.

The delays should be designed such that the overall phase
shift is in the range of 0° to 180°. This requires the designer to
know the incoming oscillator frequency and to adjust the
delays in every stage accordingly. The simple structure shown
in Fig. 5 allows only for positive phase shifts. In every stage,
the phase shift is increased or remains unchanged. Since
artificial neurons also accept negative weighted values, leading
to a decreasing net input, the design misses full functionality.
However, if the very same structure is applied to both signal
paths, virtually positive and negative phase shifts are provided.

E. Resource usage

The number of resources used in the TiCO building block is
the chosen metric, which depends on several parameters. The
number of used input bits determines the number of LEs to
generate the look-up table. If 2n denotes the number of input
bits, (2n/2-1) logic elements are required for n>1. The number
of logic elements used as buffers to form the signal delay
depends on both, the chosen oscillator frequency as well as the
geometrical chip size. The lower the frequency the higher the
delay values necessary to gain a full 180° phase shift. Also, the

smaller the chip’s size, the more buffers have to be used to
form a zick-zack wire layout pattern that acts as a multi-
segment delay path. However, at least one logic element is
required. In addition, the multiplexer is realized with the help
of one logic element. In conclusion, a four-input bit TiCO
building block utilizes at least three logic elements. The answer
on the question of how many TiCO building blocks form one
TiCO neuron is problem/design specific. For example, a TiCO
neuron with four TiCO building blocks and a four-bit input
vector allows for 16 linearly distributed phase shifts and
consumes at least 12 logic elements. However, this can be seen
as the absolute minimal requirement, practically useful neurons
may utilize 100 to 200 logic elements or even more.

IV. METHODS

A. FPGA Specification

All experiments were done with an Altera Stratix III
development board. This board is equipped with an EP3SL150
FPGA chip that provides approximately 150,000 configurable
logic elements. Altera’s Quartus 11.0 design suite was used for
synthesis. The free running oscillator signal is provided by one
of the four internal phase-locked loops. The signal frequency
was set to 3 MHz. To allow for an external signal inspection,
the generated output is monitored by a Tektronix TDS 2024
oscilloscope. To provide a proof-of-concept, two TiCO neurons
with different transfer functions were realized.

B. Linear Transfer Function

One of the simplest transfer functions is of linear shape.
This means that the resulting phase shift between the delayed
and the un-delayed oscillator signal linearly depends on the
input value. For this experiment, a neuron with four input bits
was chosen. Although relying of just one four-bit input vector
is of limited practical relevance, it serves the purpose of
showing the hardware-related details. Obviously, any different
number of input values can be used in the very same way.

Using four input bits allows for 16 distinguishing phase
shift values. As already said, the oscillator signal was set to a
frequency of 3 MHz, or a pulse width of 333 ns respectively.
To achieve a phase shift of 180 degrees, a maximum signal
delay of 166 ns has to be implemented. Thus, four different
TiCO building blocks were used with every single one
responding to one input bit. The following four delays were
chosen to 11 ns, 22 ns, 44 ns, and 88 ns. In case all the four
input bits are activated, an overall phase shift of approximately
166 ns is applied to the delayed oscillator signal.

C. Logistic Transfer Function

Since the logistic transfer function is of special interest in
neural networks, a second experiment has generated delays in a
TiCO neuron such that the dependency of the pulse width
modulated signal’s duty cycle in relation to the input values
follows a sigmoidal curve. This time, a six-bit wide input
vector was chosen. The 64 possible input values were mapped
onto a sigmoidal curve in the range from -4 to 4.

In this experiment, the oscillator’s signal frequency was set
to 4 MHz, requiring a maximum delay of 125 ns for a 180
degree phase shift. 64 TiCO building blocks were used to
realize the TiCO neuron. In every block, the logic table acts as

Figure 5. The Basic Design of TiCO neurons relies on the use of multiple

TiCO bulding blocks

TiCO building

block 1

TiCO building

block n

final XOR

oscillator signal

pulse width modulated

output signal

input

vector

lo
g

ic
 t
a

b
le

(L
T

)

delay

MUX

delayed oscillator

signal from stage n-1

delayed oscillator signal

to stage n+1

TiCO neuron

a threshold switch. The delay of each block is switched on,
when the input value is greater than the threshold of that block.
In so doing, the final delay is achieved by summing up the
delays of various blocks. This keeps the delay that has to be
generated in every block rather small. Fig. 6 shows both the
summed delay values as well as the delay steps that are
generates inside the 64 building blocks.

V. RESULTS

Visual inspection of the output signals done with the help
of the aforementioned Tektronix oscilloscope indicates that
both neurons’ behaviors fulfill the theoretical expectations.
Furthermore, the placement of the TiCO building blocks,
especially the generation of delayed signals, allows for
automation, since all coordinates can be included in simple text
assignments. The Quartus synthesis tool, used in the practical
experiments, includes a timing analyzer that calculates the
expected delays according to a given configuration. Basically,
this enables the tuning of all delays by some software
approaches, such as genetic algorithms.

A. Linear transfer function

The chosen Stratix III FPGA generates delays of
approximately 2.2 ns when a signal is routed horizontally
across the entire chip. Thus, to realize longer delays, the delay
path crosses the chip multiple times. Every time, the delay path
changes its direction, an additional logic element that acts as a
buffer is required. This additional element also introduces a
certain delay that increases the overall delay on that path.
However, by placing the buffers on the chip, any desired delay
is realizable. Placing the elements is simply done with the help
of the localization assignments in form of x- and y-coordinates.

A timing analyzer [13] is integrated in Altera’s
development tools and gives first hints about the generated
delays. The timing analyzer is able to apply different timing
models to the synthesized hardware. Those models contain all
delay information for the FPGA’s physical components, such
as logic elements, memories, and signal wires. The designer
can choose between models that differ in the assumed
operation parameters, such as the core voltage, the core
temperature, and the chip’s speed grade. Depending on the
model, the analyzer calculates the expected delays on the
hardware’s data paths. For this particular experiment, Table I

shows the number of chip crossings as well as the expected
delays calculated by the timing analyzer tool. For timing
analysis has utilized the “fast” and the “slow” timing model for
the Stratix III FPGA as provided by Altera

TABLE I. TIMING AND PLACEMENT INFORMATION FOR TICO BUILDING

BLOCKS USED IN THE LINEAR TRANSFER FUNCTION EXAMPLE

Block
number

Chip
crossings of
delay signal

calculated delay
(fast/slow)

(1) 6 15,2 ns / 22,2 ns

(2) 12 21,7 ns / 30,8 ns

(3) 22 38,9 ns / 55,7 ns

(4) 42 74,3 ns / 112,7 ns

The neuron implementing the linear transfer function
consumes 110 logic elements although only four input bits
were used. Fig. 7 shows the phase shifts for the 16 different
input values measured with the Tektronix oscilloscope. As can
be seen, the finally achieved real-world delays differ from
those delays that were calculated by Altera’s timing analysis
tool. This indicates that an automated delay adjustment should
rely on real-world data rather than on calculated delay values.
This aspect is discussed in detail in Section VI.

B. Logistic transfer function

As in Section IV announced, a neuron with a logistic
transfer function was realized. Here, the single TiCO building
blocks uses even less resources compared to the linear transfer
function. As can be seen in Fig. 6, the maximum delay step
does not exceed 4.5 ns. Thus, it is sufficient to route a single
delay path just across the chip and back within one building
block. In combination with the necessary buffer at the turning
point of the delay path, a maximum delay of 4.7 ns can be
realized. In consequence, the single TiCO building block
requires just one logic element for delay generation.

The resource usage for the entire neuron implementing the
logistic transfer function is quite low: the synthesis tool states
an overall usage of only 212 logic elements for the 64 building
blocks. For this experiment, the building blocks as well as the
delay paths were placed manually on the chip. The assumption
was that especially the delay of a signal path linearly depends

0

50

100

150

200

250

0 2 4 6 8 10 12 14

fast model
slow model
idealized
real world

Figure 7. Delay values in nanoseconds for the linear transfer function. The

real-world delays lead to phase shifts between 0° and 180° for a 3 MHz

signal

0

20

40

60

80

100

120

-4 -3 -2 -1 0 1 2 3 4

summed delay [ns]

delay steps [ns]

Figure 6. Mapping of a 125 ns delay to a sigmodial curve and resulting delay

steps for threshold switches

on the signal wire’s length. Thus the logic tables and the
multiplexer, shown in the schematic (Fig. 5) were placed on the
left-hand-side of the chip, all delay signals were routed to the
right side. The final resource placement on the chip is
illustrated in Fig. 8. As can be seen, the buffers at the turning
points of the delay path form a shape, comparable to the delay
steps in Fig. 6.

Fig. 9 shows the phase shift distribution according to a
given input value for the logistic transfer function. As can be
seen, the calculated delays (marked by circles) from the timing
analyzer fit the expected sigmoidal function. Unfortunately, the
real-world results exhibit smaller delays than expected. After
recognizing this effect at selectively chosen test points (marked
by solid triangles), the placements of the buffers of all TiCO
building blocks were manually adjusted. The adjusted delays
are marked by the ‘x’-symbol in Fig. 9.

VI. DISCUSSION

To proof the concept of the TiCO neurons, only simple
neurons were implemented on the FPGA during first
experiments. The results shown above indicate that on-chip

signal delays can be adjusted to any desired behavior.
However, a point of concern is, whether or not the TiCO
neuron is able to deliver output values at a resolution that is
sufficient for complex network structures. Here, two different
aspects have to be taken into account.

The first one is the frequency of the utilized oscillator
signal that is delayed inside the TiCO building blocks. As
indicated, two different frequencies were used, 3 MHz for the
linear transfer function and 4 MHz for the logistic transfer
function. To realize a phase shift of 180 degrees, delays of 166
ns (3MHz) and 125 ns (4MHz) are necessary. If one assumes,
that differences in the pulse widths as low as 1 ns are
detectable, these signals allow for 125 (166) different values.
To increase the number of distinguishable values, the oscillator
frequency has to be scaled down. On the other hand, a lower
frequency yields in higher resource usage due to the required
longer delays. Here, an optimal tradeoff depends on the
problem at hand.

The second aspect is the minimal achievable delay in one
delay path. Since the TiCO building block (see, Fig 3) requires
one logic element within the delay path, the delay is at least as
long as the latency of that logic element. That latency depends
on how the synthesis tool configures the logic table of that
logic element. The results indicate that values between 0.077 ns
and 0.380 ns are possible. Up to now, synthesis was performed
automatically; future research will target at low latency
configurations in all logic elements. However, at least 0.077 ns
are introduced by a delay line. A possibility to overcome this
step and to allow for finer-grained delays might be the
inclusion of further logic elements for compensation. Such
compensational logic elements are already used inside the un-
delayed signal path of the TiCO building block, since the
signal’s passing of the multiplexer inside the building block
already introduces an undesired delay. However, the approach
of compensational logic elements requires additional care due
to the requirement of equally formed delays.

Another question concerns the number of how many input
bits may or should be processed by a single TiCO neuron. The
examples discussed in Section IV used input vectors with four

0

20

40

60

80

100

120

0 10 20 30 40 50 60

sigmoidal curve

calculated delay values

delay failure

adjusted delays

y

x

x
x

x
xx

xx

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

xx

xx

x

x

xx

xx

xx

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x’

x’

x’

x’

x

x

TiCO building block

delay path for one building block

buffer at turning point of delay path

logic table and multiplexer for

building block

Chain of TiCO

building blocks

Figure 8. Illustration of on-chip placement for one TiCO neuron. The TiCO neuron consists of multiple TiCO building blocks. Every building block contains a

logic table and a multiplexer (illustrated by a square) and a delay path realized by dedicated signal routing to a buffer (illustrated by ‘x’ – the symbol x’ indicates

multiple buffers in this area). Picture taken from Altera’s chip planner tool, illustrations added to improve visibility.

Figure 9. Delay values in nanoseconds for a sigmoidal shaped phase shift

according to a given input value. The delays yield phase shifts between 0° and

180° on a 4 MHz signal

and six bits. Of course, the concept of the TiCO neuron allows
for higher numbers of input bits. Since the shown
implementations were manually placed, the number of input
bits was kept small. To handle more complex neurons, the
generation and placement of the neuron’s logic elements has to
be done automatically or at least with computational support.

The resource usage of the logistic transfer function depends
exponentially on the number of used input bits, since for any
possible input value, the sum of subsequent delay steps is
formed. The impact of that method can be lowered, if adjacent
input values are grouped and just one delay value for that group
is provided. Again, an optimal tradeoff depends on the desired
resolution and the utilized oscillator frequency.

Due to its internal structure, a TiCO neuron has a
significant performance advantage: Since no complex
computation is performed, the worst-case latency of the TiCO
neuron is less than or equal to the maximum delay that is
realized.

VII. CONCLUSION

The results of the shown experiments indicate that of-the-
shelf field-programmable gate arrays are able to provide stable,
manually adjustable delay paths, which may be used to
implement artificial neurons. These neurons deliver an output
value that is a pulse-width modulated signal, where the pulse
width modulation can be adjusted to any desired behavior.
Here, the logistic transfer function may be of particular interest.

Future research will be dedicated mainly to the following
three topics. First, an approach for the automatic delay
adjustment has to be implemented. This includes the automatic
detection of the realized delay values, which differ from those
delays that are provided by the timing analyzing tools.

Second, research will be dedicated to the realization of fully
functional TiCO networks. Here, it is not only necessary to
place multiple instances of these neurons on one chip but also
to find a way of using TiCO neurons in all layers. For complex
artificial networks that solely consist of TiCO neurons only,
research has to be dedicated towards retranslating pulse width
modulated signals back into digital data. For this task, counters
are a promising option. If done so, the TiCO neuron enables
fully parallel networks with a continuous mode of operation.

Third, the automatic online adjustment of the TiCO neurons
is a future research goal. Currently, placement has to be
calculated on a PC. Synthesis and FPGA configuration also
requires a PC. During the configuration phase, the entire FPGA
is halted and reprogrammed. However, state-of-the-art FPGAs,
namely those manufactured by XILINX, enable dynamic
reconfiguration. This approach allows for partially
reprogramming the FPGA without the need of complete shut-
downs. Here, only the reprogramed part is turned off,
reconfigured, and turned on again. The rest of the chip’s
hardware just operates as usual. This may allow for dynamic
changes in the implemented network without any stopping
operation.

In conclusion, the approach of the TiCO neuron may lead to
a new variant of hardware implemented neural networks.
Especially the low resource usage of these neurons may allow

for complex net structures. As shown in Section V, a TiCO
neuron with six input bits implementing a logistic transfer
function requires just 212 logic elements. Already today,
Altera’s Stratix V GX FPGA provides more than 700,000 logic
elements, XILINX’ Virtex 7 ships even more than 1.2 million
logic elements2.

ACKNOWLEDGMENT

The authors gratefully thank Mathias Hinkfoth, University
of Rostock, for his support during the project. Special thanks
are due to Prof. Leon Glass for the fruitful discussion he had
with Ralf Joost during the IJCNN conference 2011. This
discussion has significantly influenced the presented research.

REFERENCES

[1] M. Figueroa, E. Matamala, G. Carvajal and S. Bridges, “Adaptive signal
processing in mixed-signal VLSI with Anti-Hebbian learning”,
Emerging VLSI Technologies and Architectures (ISVLSI 06), pp. 6-11,
2006

[2] J. Zhu and P. Sutton, “FPGA implementations of neural networks - a
survey of a decade of progress”, Lecture Notes in Computer Science,
vol. 2778/2008, pp. 1-4, 2003

[3] A. Muthuramalingam, S. Himavathi and E. Srinivasan, “Neural network
implementation using FPGA : issues and application”, International
Journal of Information and Communication Engineering, vol. 4, no. 6,
pp. 396-402, 2008

[4] A. Dinu, M. N. Cirstea and S. E. Cirstea ”Direct neural-network
hardware-implementation algorithm”, IEEE Transactions on Industrial
Electronics, vol. 57, no. 5, pp. 1845-1848, 2010

[5] M. A. Çavuşlu, C. Karakuzu, S. Şahin and M. Yakut, „Neural network
training based on FPGA with floating point number format and it’s
performance”, Neural Computing and Applications, vol. 20, no. 2, pp.
195-202, 2010

[6] H. H. Lee, “The space vector PWM for voltage source inverters using
artificial neural networks based on FPGA”, Proceedings of the
International Forum of Strategic Technology (IFOST) 2010, pp 1-6,
2010

[7] E. Monmasson, L. Idkhajine, I. Lahoucine, M. N. Cirstea, I. Bahri, A.
Tisan and M. W. Naouar, ”FPGAs in industrial control applications”,
IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224-243,
2011

[8] R. Salomon and R. Joost, “BOUNCE: A new high-resolution time-
interval measurement architecture”, IEEE Embedded System Letters
(ESL), vol. 1, no. 2, pp 56-59, 2009

[9] E. Heinrich, M. Lüder, R. Joost and R. Salomon, „ X-ORCA – a
biologically inspired low-cost localization system“, Proceedings of the
10th International Conference on Adaptive and Natural Computing
Algorithms, pp. 373-382, 2011

[10] J. Kalisz, “Review of methods for time interval measurements with
picosecond resolution”, Metrologia, vol. 41, no. 1, pp. 17-32, 2004

[11] F. Stüpmann, „Self-learning neural structur – an approach towards
analog hardware implementations of neural networks“, original title:
“Selbständig lernende neuronale Struktur – ein Beitrag zur analogen
Hardwarerealisieurng neuronaler Netze”, PhD-Thesis, University of
Rostock, 2001

[12] P. Sedcole and P. Cheung, “Within-die delay variability in 90nm FPGAs
and beyond”, Proceedings of the International Conference on Field
Programmable Technology 2006, pp. 97-104, 2006

[13] Altera Corp., “Guaranteeing Silicon Performance with FPGA timing
models”, whitepaper, 2010

[14] R. Rojas, “Neural networks – a systematic introduction”, Springer, New
York, 1996

2 The numbers of resources from the product data sheets were calculated

to four-bit input look-up tables equivalents to ensure comparability. See

manufactures websites for more information.

[15] A. Thompson, “Notes on design through artificial evolution:
opportunities and algorithms”, Proceedings of the 5th International
Conference on Adaptive Computing in Design and Manufacture
(ADCM), pp 17-26, 2002

[16] J. Mason, P. S. Linsay, J. J. Collins and L. Glass, “Evolving complex
dynamics in electronic models of genetic networks”, Chaos, vol. 14, no.
3, pp. 707-715, 2004

[17] Y. Zhang, P. Huang and R. Zhu, “Upgrading of integration of time to
digit converter on a single FPGA”, Proceedings of the 15th International
Laser Ranging Workshop, October 2006

