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Abstract-Previous research has proposed several platforms for 

the direct hardware implementation of neural networks. Most of 

these platforms employ a small number of special-purpose 

processors that emulate a given number of neurons. By contrast, 

this paper proposes a light-weight hardware model, called time 

coded output (TiCO) neuron, which codes its internal activation 

as the duration of its output pulses. Since the implementation of 

such a neuron requires only about 200 logical elements, standard 

state-of-the-art field-programmable gate arrays may host several 

hundreds of neurons on a single chip. Due to its output coding 

and its low footprint, TiCO neurons are particularly suited for 

the usage in embedded systems. 
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I.  INTRODUCTION 

No doubt, neural networks of various sorts are 
indispensable tools in research and development. From an 
application point of view, the advantages of artificial neural 
networks are their massively parallel processing nature as well 
as their capabilities to learn from examples and to generalize 
previously unseen data. Last but not least, artificial neural 
networks are able to provide parameterizable and very compact 
models of complex, high-dimensional, multi-modal functions. 

In way contrast to their biological role models, most 
artificial neural networks are implemented on traditional, rather 
serial processors, such as PCs and micro controllers; parallel 
processing is a rather secondary property that emerges if the 
networks is partitioned across a few “regular” processing cores. 
In terms of processing speed, a PC-based implementation 
constitutes a significant computational bottleneck: if a 
multilayer backpropagation network would consist of 10,000 
neurons, even a 10 GHz processor would be able to calculate 
only about 20 forward paths per second. 

In light of the discussion presented above, the use of 
dedicated hardware platforms for artificial neural networks 
seems rather attractive particularly for high-performance 
applications. Section II provides a brief overview of previous 
research in that area. This review reveals two prevailing trends: 
first, analog hardware with limited computational precision and 
scaling properties, and second, coarse-grained multi-core 
platforms that employ a moderate number of heavy-weight, 
serialized multipliers. 

Hardware chips known as field-programmable gate arrays 
(FPGAs) are particularly interesting for neural network 
implementations: the (application) programmer can configure, 
place, and interconnect all the various logical gates at his or her 
own disposal. With an FPGA, a programmer can follow the 
traditional approach of constructing hardware multipliers and 
(application-specific) ALUs. However, FPGAs also allow for 
any interconnection, and thus for any form of (digital) 
hardware implementation.  

Thus, Section III proposes an alternative implementation 
approach for artificial neurons, called the time coded output 
(TiCO) neurons: rather than coding a neuron’s activation level 
as a single floating-point value, TiCO neurons communicate 
their signals with a duty cycle that is proportional to a neuron's 
internal activation state. Because of this property, TiCO 
neurons are particularly suited in embedded systems, which are 
normally tightly coupled with some physical processes. 

Practical experiments have demonstrated the feasibility of 
implementing TiCO neurons on standard FPGAs. Section IV 
provides all the technical details and algorithms used in these 
experiments. Then, Section V summarizes the achieved results, 
which indicate that off-the-shelf FPGAs allow for 
parameterizable and dynamically modifiable duty cycles on 
oscillating signals. Section VI discusses the achieved results in 
terms of performance, resource usage, and application issues. 

The TiCO neurons proposed in this paper are a first step 
towards an alternative neuronal network implementation, 
which tries to preserve the inherent parallel processing 
capability of most of the existing artificial network models. 
Section VII discusses some of the remaining research issues, 
and outlines the next steps of future research. 

II. BACKGROUND: HARDWARE IMPLEMENTATION 

PLATFORMS 

A. Digital Implementations of ANNs 

Most neural network models process their inputs in several 

stages (see, also, Fig. 1). Multilayer perceptrons [14], for 

example, first calculate their net input net according to the 

assigned input values Ij and link weights wj for all n inputs 

     ∑      
 
   . (1)



Then, they translate their net-input to the output value o by 

using some nonlinear transfer function, such as the logistic 

function  

          
 

        

or the hyperbolic tangent  

                      

In the most straight-forward way, a digital implementation 
employs a set of heavy-weight processing units. Fig. 2 shows a 
generic hardware architecture of a perceptron. As can be seen, 
the artificial neuron consists of three stages: (1) input-weight-
multiplication, (2) accumulation, and (3) output value 
computation. The size of the shown weight storage RAM 
depends on both the number of connected inputs and the 
chosen precision. Previous research [2] has recommended that 
at least a 16-bit precision should be used. Thus, a 16-bit 
hardware multiplier is necessary to calculate a 32-bit partial 
product per clock cycle. The result is stored in a temporary 
product storage and accumulated in the subsequent clock cycle. 
Given n input values, the accumulation of all weighted input 
values requires n clock cycles. Once the final sum is calculated, 
the output value of the sum storage register addresses an entry 
in the activation function look-up table (LUT). This means that 
the activation function is pre-calculated for a given input range 
and a given precision. Muthuramalingam et al. [3] have present 
an example for this approach using an FPGA-implemented 
neural network for space vector modulation. According to 
Muthuramalingam et al., the main difficulties are the trade-off 
between parallelism and resource requirements as well as the 
intended precision. They indicate that the utilization of look-up 
tables for the activation function saves approximately 70 
percent of resources compared to a full computation approach. 
However, a three-input neuron still requires 25 clock cycles, 
and more than 560 logic elements1 to do one output calculation. 

For simple threshold neurons, previous research [4] has 
proposed an alternative that relies on AND and OR gates. The 
main benefit of this approach is that it results in a rather simple 
hardware structure, whereas a disadvantage can be seen in the 

                                                           
1 In this paper, a logic element is defined as a combination of a four-bit 

input look-up table and a flip flop. The term “slice”, originally used in the 

referenced literature, is vendor specific (XILINX) and calculated as two logic 

elements. Since the introduction of the Virtex 5 FPGA family, a “slice” 

contains four logic elements.  

limited number of input values. According to the authors, the 
complexity of their approach grows exponentially in the 
number of input bits, and thus may give preference to the 
classical computation approach. 

The usage of 16-bit floating-point values has aready been 
investigated by previous research [5]. Unfortunately, the 
implementation of a 2-2-1 network for the well-known XOR-
problem requires already approximately 9800 logic elements. 

Further examples for FPGA-implemented neural networks 
can be found in the pertinent literature, where particular interest 
is given to the domain of industrial control applications [6, 7].  

B. Analog implementations:  

Some existing analog implementations avoid digital 

processing units by operating all the CMOS transistors in their 

non-linear, non-saturation regime. On the one hand, analog 

systems offer the placement of a large number of high-speed 

neurons in silicon. On the other hand, analog circuits are 

known to suffer from noise, interference and process 

variations.  

Stüpmann [11] has presented a concept and a detailed 

layout description for an analog integrated circuit, 

implementing a neural network capable of learning [11]. 

Weight multiplications as well as the sigmoidal activation 

function were realized by a Gilbert multiplier. Furthermore, 

capacitive elements provided the required weight storage 

functionality. However, the design was far from a mass- 

production state.  

Figueroa et al. [1] have pointed out that in analog circuits 

the main issues are nonlinearities in the current-to-voltage 

transfer characteristics. To provide a tool for predicting 

implementation performance, they have designed an FPGA-

based network emulator in order. The emulation required the 

transfer of both analog multipliers and memory cells to the 

digital FPGA world. In the end, they used a concept, named 

temporal synapse slicing, to keep the number of required 

FPGA resources low. Again, mixing the analog behavior of 

neurons and digital processing is interfered by the 

requirements of the multiplications and transfer functions. 

III. THE TICO NEURON 

This section presents a different approach for reaching 
analog behavior without leaving the digital world. This 
approach is named Time Coded Output Neuron (TiCO neuron). 

Figure 2.  Generic hardware architecture for an FPGA-implementation of a 

perceptron 

Figure 1.  The multilayer perceptron 
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This neuron is characterized by the use of the pulse width 
modulation to encode analog information on a single bit signal 
line.  

A. Overview 

The goal of the TiCO neuron is to provide a simple, low-
cost implementation variant for artificial neurons. This concept 
is illustrated in Fig. 3. The basic idea is to offer neurons that 

emit pulses with variable lengths. The pulse length  = f(net) is 
proportional to a neuron's activation value, and thus directly 
codes for its output state. In other words, a TiCO neuron is a 
voltage-controlled oscillator (VCO) in which not the frequency 
but the duty cycle is the target.  

B. Generating pulses with variing duty cycles 

To generate rectangular signals, most integrated circuits 
utilize some form of dedicated hardware, such as phase locked 
loops or other types of oscillators. The signal’s parameters are 

its frequency f, its period T=1/f, and the signal’s duty cycle . 

Usually, the duty cycle  =T/2 is half the signal’s period T. In 

order to obtain a duty cycle that differs from the value  =T/2, 
the designer has two options. The first option would be to 
change the properties of the global oscillator, which would be, 
however, quite useless, since the duty cycle has to be adapted 
for every single neuron on an individual basis. Therefore, the 
duty cycle has to be changed within every neuron. This can be 
done in the following way: the oscillator signal s(t) is 
duplicated to s’(t). This duplicated signal is phase shifted to 

s'(t-t). Finally, both signals s(t) and s'(t-t) are combined by 

an exclusive-or gate XOR(s(t), s'(t-t)). This procedure is 

exemplified in Fig. 4. Valid delay values t are in the range 
from 0 to T/2, since other values introduce some form of 
unambiguity due to the signal’s periodic behavior. The duty 

cycle  =2t is twice as long as the applied delay value t. 

C. Delay generation 

The pertinent literature offers at least three different 
methods to generate delays in integrated circuits. The classical 
approach is to use the processing delays of the FPGA’s logic 
elements [10]. These delays depend on the FPGA technology, 
and are usually in the range of 200 ps to 400 ps. Thus, a delay 
chain with a resolution of 200 ps to 400 ps can be obtained by 
serially connecting any desired number of logic elements. A 
more fine-grained delay chain can be implemented by using the 
special-purpose carry path between adjacent logic elements. 

This carry path is usually dedicated to fast ripple-carry adders, 
and yields a processing delay of approximately 30 ps [17]. It 
should be kept in mind, though, that the use of logic elements 
as parts of a delay chain implies two disadvantages. First, the 
use of logic elements increases the design-size significantly, 
slowing down all involved development processes, i.e., 
synthesis, placement, and debugging. Second, logic elements 
tend to vary their processing speeds (delays) according to the 
exogenous parameters, such as the on-chip temperature and the 
on-chip supply voltage setting [12].  

Recent research has suggested a third way of generating on-
chip delays. The BOUNCE/X-ORCA architecture [8, 9] is a 
high-performance time measurement system that yields a 
resolution of better than 10 ps by utilizing the propagation 
delays that are imposed by an integrated circuit’s passive 
electrical wires. Due to the regular structure of an FPGA, it is 
possible to place two logic elements such that the connecting 
signal between both exhibits any desired delay. In other words, 
increasing the geometrical distance between two logic elements 
that are placed on the FPGAs regular grid also increases the 
delay between those elements. Only the geometrical size of the 
FPGA limits the maximum segment length of a signal wire, 
and thus the achievable delay between two logic elements. 
However, consecutively connecting multiple instances of these 
delay segments again ensures a wide range of achievable 
delays. This approach has two benefits: the number of used 
hardware resources remains low and the delays are apparently 
more stable against temperature changes. 

D. Implementing the TiCO neuron 

A single TiCO neuron is achieved by connecting a user-
defined number of simple TiCO building blocks as shown in 
Fig. 5. In essence, every TiCO building block is able to shift 

the incoming oscillator signal by a dedicated delay t. 
Furthermore, the neuron’s input vector is used to control 
whether a TiCO building block feeds the delayed signal or the 

Figure 3.  TiCO: the general mode of operation 
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un-delayed signal to the next TiCO building block. The 
generation of this control signal is performed inside every 
single building block by a logic table (LT). The generated 
control signal is only valid for that block. Thus, the user may 
define different control functions for every block. As a 
consequence, a particular input vector may enable the delay of 
some building blocks whereas others transfer an un-delayed 
signal. In so doing, the entire system of TiCO building blocks 
results in an overall phase shift. Finally, the phase-shifted 
signal is XOR-ed with the un-shifted original signal, producing 
a pulse width modulated signal with a duty cycle of 0% to 
100%. 

As can be seen in Fig. 5, delays are only imposed on one 
channel; the original oscillator signal bypasses all delay stages 
and feeds the final XOR. Since already the latency of the 
integrated multiplexer introduces a delay to the signal, the 
original oscillator signal also has to pass the very same number 
of multiplexers to correct this effect. These bypass multiplexers 
are not shown.   

The delays should be designed such that the overall phase 
shift is in the range of 0° to 180°. This requires the designer to 
know the incoming oscillator frequency and to adjust the 
delays in every stage accordingly. The simple structure shown 
in Fig. 5 allows only for positive phase shifts. In every stage, 
the phase shift is increased or remains unchanged. Since 
artificial neurons also accept negative weighted values, leading 
to a decreasing net input, the design misses full functionality. 
However, if the very same structure is applied to both signal 
paths, virtually positive and negative phase shifts are provided. 

E. Resource usage 

The number of resources used in the TiCO building block is 
the chosen metric, which depends on several parameters. The 
number of used input bits determines the number of LEs to 
generate the look-up table. If 2n denotes the number of input 
bits, (2n/2-1) logic elements are required for n>1. The number 
of logic elements used as buffers to form the signal delay 
depends on both, the chosen oscillator frequency as well as the 
geometrical chip size. The lower the frequency the higher the 
delay values necessary to gain a full 180° phase shift. Also, the 

smaller the chip’s size, the more buffers have to be used to 
form a zick-zack wire layout pattern that acts as a multi-
segment delay path. However, at least one logic element is 
required. In addition, the multiplexer is realized with the help 
of one logic element. In conclusion, a four-input bit TiCO 
building block utilizes at least three logic elements. The answer 
on the question of how many TiCO building blocks form one 
TiCO neuron is problem/design specific. For example, a TiCO 
neuron with four TiCO building blocks and a four-bit input 
vector allows for 16 linearly distributed phase shifts and 
consumes at least 12 logic elements. However, this can be seen 
as the absolute minimal requirement, practically useful neurons 
may utilize 100 to 200 logic elements or even more. 

IV. METHODS 

A. FPGA Specification 

All experiments were done with an Altera Stratix III 
development board. This board is equipped with an EP3SL150 
FPGA chip that provides approximately 150,000 configurable 
logic elements. Altera’s Quartus 11.0 design suite was used for 
synthesis. The free running oscillator signal is provided by one 
of the four internal phase-locked loops. The signal frequency 
was set to 3 MHz. To allow for an external signal inspection, 
the generated output is monitored by a Tektronix TDS 2024 
oscilloscope. To provide a proof-of-concept, two TiCO neurons 
with different transfer functions were realized.  

B. Linear Transfer Function 

One of the simplest transfer functions is of linear shape. 
This means that the resulting phase shift between the delayed 
and the un-delayed oscillator signal linearly depends on the 
input value. For this experiment, a neuron with four input bits 
was chosen. Although relying of just one four-bit input vector 
is of limited practical relevance, it serves the purpose of 
showing the hardware-related details. Obviously, any different 
number of input values can be used in the very same way. 

Using four input bits allows for 16 distinguishing phase 
shift values. As already said, the oscillator signal was set to a 
frequency of 3 MHz, or a pulse width of 333 ns respectively. 
To achieve a phase shift of 180 degrees, a maximum signal 
delay of 166 ns has to be implemented. Thus, four different 
TiCO building blocks were used with every single one 
responding to one input bit. The following four delays were 
chosen to 11 ns, 22 ns, 44 ns, and 88 ns. In case all the four 
input bits are activated, an overall phase shift of approximately 
166 ns is applied to the delayed oscillator signal.  

C. Logistic Transfer Function 

Since the logistic transfer function is of special interest in 
neural networks, a second experiment has generated delays in a 
TiCO neuron such that the dependency of the pulse width 
modulated signal’s duty cycle in relation to the input values 
follows a sigmoidal curve. This time, a six-bit wide input 
vector was chosen. The 64 possible input values were mapped 
onto a sigmoidal curve in the range from -4 to 4.  

In this experiment, the oscillator’s signal frequency was set 
to 4 MHz, requiring a maximum delay of 125 ns for a 180 
degree phase shift. 64 TiCO building blocks were used to 
realize the TiCO neuron. In every block, the logic table acts as 

Figure 5.  The Basic Design of TiCO neurons relies on the use of multiple 
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a threshold switch. The delay of each block is switched on, 
when the input value is greater than the threshold of that block. 
In so doing, the final delay is achieved by summing up the 
delays of various blocks. This keeps the delay that has to be 
generated in every block rather small. Fig. 6 shows both the 
summed delay values as well as the delay steps that are 
generates inside the 64 building blocks.  

V. RESULTS 

Visual inspection of the output signals done with the help 
of the aforementioned Tektronix oscilloscope indicates that 
both neurons’ behaviors fulfill the theoretical expectations. 
Furthermore, the placement of the TiCO building blocks, 
especially the generation of delayed signals, allows for 
automation, since all coordinates can be included in simple text 
assignments. The Quartus synthesis tool, used in the practical 
experiments, includes a timing analyzer that calculates the 
expected delays according to a given configuration. Basically, 
this enables the tuning of all delays by some software 
approaches, such as genetic algorithms. 

A. Linear transfer function 

The chosen Stratix III FPGA generates delays of 
approximately 2.2 ns when a signal is routed horizontally 
across the entire chip. Thus, to realize longer delays, the delay 
path crosses the chip multiple times. Every time, the delay path 
changes its direction, an additional logic element that acts as a 
buffer is required. This additional element also introduces a 
certain delay that increases the overall delay on that path. 
However, by placing the buffers on the chip, any desired delay 
is realizable. Placing the elements is simply done with the help 
of the localization assignments in form of x- and y-coordinates. 

A timing analyzer [13] is integrated in Altera’s 
development tools and gives first hints about the generated 
delays. The timing analyzer is able to apply different timing 
models to the synthesized hardware. Those models contain all 
delay information for the FPGA’s physical components, such 
as logic elements, memories, and signal wires. The designer 
can choose between models that differ in the assumed 
operation parameters, such as the core voltage, the core 
temperature, and the chip’s speed grade. Depending on the 
model, the analyzer calculates the expected delays on the 
hardware’s data paths. For this particular experiment, Table I 

shows the number of chip crossings as well as the expected 
delays calculated by the timing analyzer tool. For timing 
analysis has utilized the “fast” and the “slow” timing model for 
the Stratix III FPGA as provided by Altera 

TABLE I.  TIMING AND PLACEMENT INFORMATION FOR TICO BUILDING 

BLOCKS USED IN THE LINEAR TRANSFER FUNCTION EXAMPLE 

Block 
number 

Chip 
crossings of 
delay signal 

calculated delay 
(fast/slow) 

(1) 6 15,2 ns / 22,2 ns 

(2) 12 21,7 ns / 30,8 ns 

(3) 22 38,9 ns / 55,7 ns 

(4) 42 74,3 ns / 112,7 ns 

 

The neuron implementing the linear transfer function 
consumes 110 logic elements although only four input bits 
were used. Fig. 7 shows the phase shifts for the 16 different 
input values measured with the Tektronix oscilloscope. As can 
be seen, the finally achieved real-world delays differ from 
those delays that were calculated by Altera’s timing analysis 
tool. This indicates that an automated delay adjustment should 
rely on real-world data rather than on calculated delay values. 
This aspect is discussed in detail in Section VI. 

B. Logistic transfer function 

As in Section IV announced, a neuron with a logistic 
transfer function was realized. Here, the single TiCO building 
blocks uses even less resources compared to the linear transfer 
function. As can be seen in Fig. 6, the maximum delay step 
does not exceed 4.5 ns. Thus, it is sufficient to route a single 
delay path just across the chip and back within one building 
block. In combination with the necessary buffer at the turning 
point of the delay path, a maximum delay of 4.7 ns can be 
realized. In consequence, the single TiCO building block 
requires just one logic element for delay generation. 

The resource usage for the entire neuron implementing the 
logistic transfer function is quite low: the synthesis tool states 
an overall usage of only 212 logic elements for the 64 building 
blocks. For this experiment, the building blocks as well as the 
delay paths were placed manually on the chip. The assumption 
was that especially the delay of a signal path linearly depends 
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on the signal wire’s length. Thus the logic tables and the 
multiplexer, shown in the schematic (Fig. 5) were placed on the 
left-hand-side of the chip, all delay signals were routed to the 
right side. The final resource placement on the chip is 
illustrated in Fig. 8. As can be seen, the buffers at the turning 
points of the delay path form a shape, comparable to the delay 
steps in Fig. 6. 

Fig. 9 shows the phase shift distribution according to a 
given input value for the logistic transfer function. As can be 
seen, the calculated delays (marked by circles) from the timing 
analyzer fit the expected sigmoidal function. Unfortunately, the 
real-world results exhibit smaller delays than expected. After 
recognizing this effect at selectively chosen test points (marked 
by solid triangles), the placements of the buffers of all TiCO 
building blocks were manually adjusted. The adjusted delays 
are marked by the ‘x’-symbol in Fig. 9.  

VI. DISCUSSION 

To proof the concept of the TiCO neurons, only simple 
neurons were implemented on the FPGA during first 
experiments. The results shown above indicate that on-chip 

signal delays can be adjusted to any desired behavior. 
However, a point of concern is, whether or not the TiCO 
neuron is able to deliver output values at a resolution that is 
sufficient for complex network structures. Here, two different 
aspects have to be taken into account.  

The first one is the frequency of the utilized oscillator 
signal that is delayed inside the TiCO building blocks. As 
indicated, two different frequencies were used, 3 MHz for the 
linear transfer function and 4 MHz for the logistic transfer 
function. To realize a phase shift of 180 degrees, delays of 166 
ns (3MHz) and 125 ns (4MHz) are necessary. If one assumes, 
that differences in the pulse widths as low as 1 ns are 
detectable, these signals allow for 125 (166) different values. 
To increase the number of distinguishable values, the oscillator 
frequency has to be scaled down. On the other hand, a lower 
frequency yields in higher resource usage due to the required 
longer delays. Here, an optimal tradeoff depends on the 
problem at hand. 

The second aspect is the minimal achievable delay in one 
delay path. Since the TiCO building block (see, Fig 3) requires 
one logic element within the delay path, the delay is at least as 
long as the latency of that logic element. That latency depends 
on how the synthesis tool configures the logic table of that 
logic element. The results indicate that values between 0.077 ns 
and 0.380 ns are possible. Up to now, synthesis was performed 
automatically; future research will target at low latency 
configurations in all logic elements. However, at least 0.077 ns 
are introduced by a delay line. A possibility to overcome this 
step and to allow for finer-grained delays might be the 
inclusion of further logic elements for compensation. Such 
compensational logic elements are already used inside the un-
delayed signal path of the TiCO building block, since the 
signal’s passing of the multiplexer inside the building block 
already introduces an undesired delay. However, the approach 
of compensational logic elements requires additional care due 
to the requirement of equally formed delays. 

Another question concerns the number of how many input 
bits may or should be processed by a single TiCO neuron. The 
examples discussed in Section IV used input vectors with four 
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and six bits. Of course, the concept of the TiCO neuron allows 
for higher numbers of input bits. Since the shown 
implementations were manually placed, the number of input 
bits was kept small. To handle more complex neurons, the 
generation and placement of the neuron’s logic elements has to 
be done automatically or at least with computational support. 

The resource usage of the logistic transfer function depends 
exponentially on the number of used input bits, since for any 
possible input value, the sum of subsequent delay steps is 
formed. The impact of that method can be lowered, if adjacent 
input values are grouped and just one delay value for that group 
is provided. Again, an optimal tradeoff depends on the desired 
resolution and the utilized oscillator frequency. 

Due to its internal structure, a TiCO neuron has a 
significant performance advantage: Since no complex 
computation is performed, the worst-case latency of the TiCO 
neuron is less than or equal to the maximum delay that is 
realized.  

VII. CONCLUSION 

The results of the shown experiments indicate that of-the-
shelf field-programmable gate arrays are able to provide stable, 
manually adjustable delay paths, which may be used to 
implement artificial neurons. These neurons deliver an output 
value that is a pulse-width modulated signal, where the pulse 
width modulation can be adjusted to any desired behavior. 
Here, the logistic transfer function may be of particular interest. 

Future research will be dedicated mainly to the following 
three topics. First, an approach for the automatic delay 
adjustment has to be implemented. This includes the automatic 
detection of the realized delay values, which differ from those 
delays that are provided by the timing analyzing tools.  

Second, research will be dedicated to the realization of fully 
functional TiCO networks. Here, it is not only necessary to 
place multiple instances of these neurons on one chip but also 
to find a way of using TiCO neurons in all layers. For complex 
artificial networks that solely consist of TiCO neurons only, 
research has to be dedicated towards retranslating pulse width 
modulated signals back into digital data. For this task, counters 
are a promising option. If done so, the TiCO neuron enables 
fully parallel networks with a continuous mode of operation. 

Third, the automatic online adjustment of the TiCO neurons 
is a future research goal. Currently, placement has to be 
calculated on a PC. Synthesis and FPGA configuration also 
requires a PC. During the configuration phase, the entire FPGA 
is halted and reprogrammed. However, state-of-the-art FPGAs, 
namely those manufactured by XILINX, enable dynamic 
reconfiguration. This approach allows for partially 
reprogramming the FPGA without the need of complete shut-
downs. Here, only the reprogramed part is turned off, 
reconfigured, and turned on again. The rest of the chip’s 
hardware just operates as usual. This may allow for dynamic 
changes in the implemented network without any stopping 
operation. 

In conclusion, the approach of the TiCO neuron may lead to 
a new variant of hardware implemented neural networks. 
Especially the low resource usage of these neurons may allow 

for complex net structures. As shown in Section V, a TiCO 
neuron with six input bits implementing a logistic transfer 
function requires just 212 logic elements. Already today, 
Altera’s Stratix V GX FPGA provides more than 700,000 logic 
elements, XILINX’ Virtex 7 ships even more than 1.2 million 
logic elements2.  
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