Service-Oriented Approaches for the Operation of large on-chip Networks

Claas Cornelius, Hendrik Bohn, Dirk Timmermann

System Control for Networks-on-Chip

Emergence:
- Algorithm-on-Chip
- System-on-Chip
- Network-on-Chip

Nowadays operating systems cannot simply be adopted.

Service-Oriented Architecture (SOA)

Related work:
- Centralized approach:
 - Polling of packet statistics within a separate control network [Nollet, 2004]
 - Distributed object system for hardware reconfiguration [Hecht, 2006]
 - Task mapping for QoS, no control of communication [Kavaldjieva, 2004]
- Distributed approach:
 - Configurable and modular system software [Benini, 2002]

System monitoring / -control:
- Dynamic, online management:
 - Task mapping, load balancing
 - Communication
 - Power consumption:
 - Temperature distribution
 - Supply voltage drop
 - Power-down modes
 - Composition of functions/tasks/services
 - Reliability, self-healing

Different Approaches for System Control

Centralized:
- Straight forward implementation
- Global system perspective
- Little hardware requirements
- Message contention
- Latency (hop count & contention)

Distributed:
- Hot spot avoided
- Raised number of control messages
- Redundant hardware required
- Global awareness lost
- Real-time requirements
- Multi- or broadcast messages needed

Hierarchical:
- A hierarchical approach could bring together the advantages of both approaches while masking their drawbacks.

University of Rostock, Germany
Institute of Applied Microelectronics and Computer Engineering

contact: claas.cornelius@uni-rostock.de