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Aggressive downscaling of CMOS devices in every 
technology generation resulted in higher integration 
density and performance. At the same time, yield, which 
is the ratio of flawless versus all fabricated chips, 
drastically decreased. Failed chips are divided in defect 
devices (defect yield) and devices, which failed the 
desired performance (parametric yield). Parameter 
variations, which strongly increase with reduced 
technology sizes, are responsible for decreasing 
parametric yield [1]. Parameter variations are divided into 
intra-die and inter-die variations. Due to the latter, the 
same circuits might have different characteristics on 
different dies. Intra-die variations are the variations of 
transistor characteristics within a single chip. Both kinds 
of variations are expected to be truly random in nature 
[2]. The parameter variations are based on different 
effects, such as variations in process parameters, 
temperature, or supply voltage. These variations lead to 
changes in transistor characteristics, which might result in 
longer delays.  

In established static timing analysis (STA), which is 
used to determine circuit performance, the effect of 
parameter variation is modeled with corner-case models. 
Each gate is set to its worst-case delay value at this 
corner-case timing analysis. Signal arrival times at the 
output of a gate are estimated by adding the gate delay to 
the signal arrival time at the inputs. Corner-case STA is 
based on assumptions of inter-die variations only. But, 
intra-die variations cannot be ignored in technologies 
with gate length below 100nm [1]. Hence, traditional 
corner-case STA is quite pessimistic and underestimates 
the value for typical performance and overestimates the 
worst-case timing behavior [3]. 

In contrast, statistical static timing analysis (SSTA) 
considers intra-die variations. The gate delay is based on 
probability functions. Hence, signal arrival times are 
modeled as probabilistic functions. The delay variability 
can be described with cumulative probability distribution 
function (CDF) or probability density function (PDF). A 
CDF describes the probability that the delay is lower than 
a given value x. In contrast, a PDF describes the 
probability that the delay has the value x:  
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σ is the standard deviation, σ² is the variance, and µ is 
the expected value. We model the gate delay and data 
arrival time as Gaussian distributions with expected value 
µ and variance σ². At single input gates the output signal 
arrival time result from: 
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µout, µin, and µgate are the expected values of the output 
and input arrival time, and the gate delay, respectively. 
σout, σin, and σgate are the variances of output and input 
signal, and gate delay, respectively.  

A very common approach for evaluating output signal 
arrival time at multi-input gates is the creation of tables, 
which includes the results for different input signal arrival 
time combinations [2]. In [3], gates with multiple inputs 
are divided in single input gates. Both approaches 
considerably increase the complexity or require extensive 
library characterization. 

 We assume as worst-case that a gate needs all input 
signals to generate an output signal. Hence, the worst-
case time for starting the gate evaluation cannot start 
before the latest input signal arrived. As shown, CDF can 
be used to describe the probability that a signal has 
arrived. Thus, the probability that all signals have arrived 
results from multiplication of all input signal arrival time 
CDFs. So, at each time the probability is considered for 
each arriving input signal. The result is a CDF for the 
time of the evaluation start. The estimation of this CDF 
can be divided into two main cases. In the first case, one 
signal arrives much later than the other input signals. 
Then, its CDF is nearly equal to the CDF of the 
evaluation start time. Consequently, PDF of last arriving 
input signal and evaluation start time evalbegin are nearly 
equal.  

In the second case, the overlap of input arrival time 
CDFs has to be considered. Then, the probability function 
of evaluation start time depends on different inputs. As 
the purpose is a manageable calculation of CDF and PDF 
for evalbegin, we simplify the complex problem by an 
approximation. 



The rising edge of a CDF can be approximated as a 
straight line s(x) with: 
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This simplification of CDFs can be used to find µnew 
and σnew for an approximated description of evalbegin. A 
CDF(x) has the value 0.5, if x = µ. Hence, the approach 
aims at the determination of the time instance where the 
product of the straight line approximations of all input 
arrival times is 0.5. That means the solution of: 
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As these are equations of higher order, more than one 
solution is possible. If µnew is known, we calculate σnew 
from the difference between µnew and the point in time 
tmax, where the last signal arrives with a probability of 
0.99. That means: 
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Hence, the approximated CDF and PDF of the 
evaluation start time result from the new expected value 
µnew and the new standard deviation σnew. 
Figure 1 depicts CDF of input signals in1 and in2 with 
overlapping arrival time probability, the resulting 
probability for the evaluation start time evalbegin, the new 
generated probability for the evaluation start time new-
evalbegin, and the approximated straight line for CDF of 
the latter.  

The new approach is slightly pessimistic as due to 
applying straight-line multiplications, µnew is greater than 
the highest expected value µin,max of the inputs. 
Furthermore, σnew is based on standard deviation of the 
latest arriving signal which has not always the greatest 
µin,max. 

To model parameter variations, common approaches  
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Figure 1: CDFs of overlapping input signals and 
resulting worst-case time for start of evaluation 

vary technology or transistor parameters,  which 
strongly impact gate delay, like gate length Leff or gate 
width Weff [2][3]. Then, the gate delay is described as a 
function of varied parameters. This allows accurate 
mathematical formulation of the problem. But, evaluation 
effort increases drastically with each additional 
parameter. Thus, only one or two parameters are varied.  

The new idea is the modeling of the gate delay 
variation under consideration of more than one or two 
parameters. The demand is an easy to handle model. 
Thus, we chose a Gaussian distribution description, 
whereas its values are extracted from Monte-Carlo spice 
simulations. We verified the accuracy of this approach for 
an inverter, based on the BPTM predictive 65nm 
technology library. First, Monte-Carlo spice simulations 
were applied, where all parameters, which can vary, were 
described with Gaussian distribution. We assumed 10% 
variation of Leff, Weff, thickness of gate oxide layer Tox, 
temperature, and supply voltage Vdd for each transistor. 
As the distributions of resulted delays are similar to 
Gaussian distribution, we extracted the expected value µ 
and standard deviation σ of gate delay. Finally, we 
described gate delay as function of gate length Leff, where 
variance has the same distribution as in previous 
simulations. The result indicates, that the new approach 
for modeling of gate delay is closer to realistic 
distribution of gate delay than common approaches (see 
figure 2). 

These results are based on the behavior of Gaussian 
distributions, whereas convolution of Gaussian 
distributions results in new Gaussian distributions. The 
evaluation of gate delay is based on multiplication of 
varied parameters. Hence, gate delay can be described as 
Gaussian distribution.  
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Figure 2: Distribution of Inverter Delay 
considering parameter variations 
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