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Abstract 

This paper describes the architecture for a generic functional verification (FV) environment that can be applied to 
different FV platforms (HDL simulation, simulation acceleration, ASIC emulation, and FPGA prototyping). The 
approach benefits from the reduction of setup time of the FV environment and minimization of transfer time to 
another FV platform. This can be achieved by extensively employing reuse methodologies for the components in 
FV environments. Furthermore, the transaction-based methodology supports the creation of stimuli on a higher 
abstraction level. Stimuli can be re-applied at different FV platforms. The design of a synthesizable FV environ-
ment speeds up the FV run itself. This novel approach combines three test strategies: synthesizable testbenches, 
transaction-based verification (TBV), and a dedicated architecture for FV environments independent from the FV 
platform. It has been successful qualified in several industrial applications. 
 

1 Introduction 

Continuously increasing chip design complexity re-
quires new ways for the setup of functional verifica-
tion (FV) in order to reduce effort and time because a 
typical chip development requires more than one FV 
platform to perform all necessary checks. Interactively 
providing complex stimuli to the device-under-test 
(DUT) in various verification runs on different FV 
platforms challenges design teams. The overall effort 
for the setup and performance of FV already takes up 
to 70% of the total development time of the chip. This 
results in the main question: what functionality is nec-
essary to be checked and what can we afford, given 
limited development time and resources.  
Some publications dealt with a FV outlined in [1] re-
sulting in the fact that the more carefully FV is plan-
ned, the more effectively FV can be performed. This 
is certainly right. However, introduction of a generic 
architecture for a FV environment is the key to apply 
reuse, to raise the transparency level of stimuli, and to 
be able to follow the same architectural approach for 
different FV platforms. Different FV platforms (simu-
lation acceleration, ASIC emulation or FPGA prototy-
ping) are employed to achieve speed-up and certify 
the ability to see all signals within the chip design. A 
synthesizable approach allows mapping the 
architecture onto the different FV platforms and veri-
fication time decreases with the speed-up of the used 
FV platform. 
Cohen presented in [2] a transaction-based verifica-
tion (TBV) methodology. This approach is tool-
independent and defines exactly the boundary between 
the reusable architecture approach and the application 
specific part (mostly interfaces). However, the appli-
cation specific part of the FV environment reflects 

back to the used FV platform, e.g. reuse can only be 
applied between FV environments which base on the 
same FV platform. 
This paper presents an architecture of a generic FV 
environment which is applicable in different FV plat-
forms. First, we briefly review the state-of-the-art of 
FV methodologies. Next, we present our strategy and 
the concept of a FV architecture with mainly synthe-
sizable components. The next section describes two 
different FV environments which show the realization 
of the presented approach. After evaluation, we finish 
with the conclusions and outlook. 

2 Functional Verification Today 

The current chip (hardware) design process can be 
roughly described with the following stages that start 
with the specification1. This is coded in an RTL model 
that needs to be simulated with a HDL simulator re-
quiring a testbench. The process continues with the 
logic synthesis that ends up with a netlist and needs to 
be functionally verified, as well. Facing current chip 
design complexity, the designer switches to another 
FV platform (Sim Accelerator, ASIC emulation, FPGA 
prototyping) that requires a further FV environment 
which usually needs to be built up anew. The delivery 
of engineering samples finishes the FV part of the 
chip-design process. This is when the “silicon valida-
tion” phase starts. 

                                                           
1 To short cut the process description, it has been as-
sumed that feasibility study, HW/SW partitioning, and 
the system-reference modelling has already been done 
and ended up in the specification. 



The FV platforms base on two groups of FV method-
ologies: either testbench (TB) or a target system (TS). 
Transferring the chip design to a new FV platform im-
plies an entirely new FV environment. Typically, pro-
ject management argues rather to avoid the usage of 
the further FV platform because of setup time and ef-
fort reasons than using it even if it would bring a sig-
nificant value to the development process. 
Consequently, the challenge is to reduce overall effort 
for setup and performance of FV. Also, the effort to 
transfer the design to another FV platform must be re-
duced because chip complexities require having mul-
tiple, heterogeneous FV platforms. 
There are several approaches known to set up a FV 
environment [3]. Some directly relate to a commercial 
general-purpose verification tool (see Figure 1), other 
approaches relate to a certain FV methodology. The 
usage of a verification tool usually implies a tool-
related FV environment which offers possible speed-
up compared with slow conventional HDL simulation. 
Others use partly synthesizable FV modules where the 
synthesized part can be downloaded onto the dedi-
cated FV hardware or use transaction-based verifica-
tion which is today still tool dependent. Here, the ad-
vantage is raising the abstraction level for the stimuli 

[4], see Figure 2, and use tool dependent speed-up 
technologies2. 
Typically, reuse takes place in design teams between 
different generations of the chip or between projects 
that are similar with respect to chip application up to a 
certain level. Switching from one to another FV plat-
form3 does necessarily result in the setup of a new FV 
environment where reuse can seldom be applied be-
tween different FV environments. 

3 Concept 

Four items have been identified to improve the pro-
ductivity, e.g. shorten time-to-market, of the FV phase 
in a chip development as mentioned in the previous 
section:  

- Reusability 
- High-level test creation 
- FV platform independence 
- Speed of the verification run 

 
Reuse in chip design itself is today the key to a higher 
productivity. We can learn from this and apply reuse 
methodologies to the components of the verification 
environment. The first step is then to unitize the FV 
environment. In the next step, the interfaces between 
these modules are defined and standardized. FV mod-
ules can be cut between different abstraction levels of 
stimuli in general or between different types of stimuli 
e.g. data or control signals. The idea of transaction-
based verification (TBV) generally supports both 
modularization approaches, e.g. is independent from 
chosen architecture. 
A FV module in TBV methodology is divided into 
high transaction-level and low signal-level. At signal-
level, these transactions or tasks are executed, inter-
preted, and instantly a corresponding sequence of bi-
nary values is created and propagated to the device 
under test (DUT). The modules that create transac-
tions on the high level are called transactors, modules 
that interpret the transactions are called transaction 
interpreters [2]. For each FV module which provides 
an interface of the DUT a single transactor as well as 
transaction interpreter is to be modeled. 
Transactors are used to initiate data transfers that are 
executed by the corresponding transaction-
interpreters. Often, but not necessarily, transactors are 
modeled in high-level verification languages [7], [8]. 
The approach described in this paper avoids the usage 
of a verification language for the first moment in order 

                                                           
2 Commercial suppliers drive most TBV solutions. 
That results in a need to use a certain tool and/or FV 
platform. 
3 The need for multiple FV environments in chip de-
velopments results from the continuously increasing 
complexity of the design as mentioned above in this 
paper. 

 

Figure 1 Tool-related verification approach 

 

Figure 2 Transaction-based verification approach 
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to keep tool and platform independence. Verification 
language may come in when the platform-dependent 
FV module is going to be implemented.  
To verify complex designs, the synchronization of 
tasks / transactions has to be supported. This is diffi-
cult since multiple interfaces/transactors to the DUT 
need to be modeled. The described approach solves 
this by using a single, central transactor connected to 
all transaction interpreters via a standardized commu-
nication structure called testbench bus (TB-bus) (see 
Figure 3). All transaction and transfer operations are 
initiated from this central transactor, so that the syn-
chronization of multiple transaction interpreters is fea-
sible. The central transactor is called TB-processor 
and implemented as a small RISC processor. Transac-
tor, transactor commands, transaction interpreters, and 
TB-bus are fully reusable. 
For each platform a platform-specific environment is 
necessary. To reuse a FV environment on different 
platforms with a minimum effort, the FV environment 
has to be as much as possible platform-independent. 
All synthesizable components of a verification envi-
ronment are FV platform independent. For that rea-
son, our approach is to build up an environment that is 
mostly synthesizable. Since synthesizable components 
can be integrated into FV platforms, less communica-
tion between tool interfaces (example: simulation ac-
celerator hardware and connected HDL simulator) is 
required. In conjunction with hardware-based FV plat-
forms a significant speed up of the FV environment 
can be achieved. Nevertheless, the implementations of 
memory and I/O from and into the FV platform are 
specific to the FV platform. 

4 Strategy 

To realize the idea of a synthesizable TBV-based FV 
environment we have to modularize [3] and to stan-
dardize [5] the environment. 

We use a RISC-CPU as single transactor for all trans-
action-interpreters. In conjunction with a C-Compiler, 
we are capable to achieve the same abstraction level 
as a traditional transaction-based environment. There 
are commercial testbench languages which offer 
higher flexibility for a description than the C-language 
but we pursue a tool and platform independent ap-
proach. In the future, with an existing methodology, an 
optimal testbench language can be applied. Moreover, 
the CPU offers a flexibility that is requested by the 
functional complexity of the DUT. The CPU initiates 
all transactions and is responsible for the control flow 
inside the FV environment, i.e. the verification run is 
controlled by the C-program that is fed into the CPU. 
The transactions are transferred from the CPU to the 
transaction-interpreters via the testbench bus (TB-
bus), see Figure 3. Such interpreters can also imple-
ment the interfaces to the required data for DUT 
which have to be provided from the verification plat-
form. The CPU realizes a central unit to control and 
synchronize the interfaces if needed. The main advan-
tage is that the total verification flow is described and 
documented in a single program. This again supports 
the reusability on different platforms with the same 
architecture of the verification environment. 
The TB-bus is a synchronous, parallel, and standard-
ized bus that transfers commands, result data from an 
operation, and synchronization events to the FV mod-
ules. The TB-Bus consists of four signals. These are 
the address of the transaction interpreter, the dedicated 
command id of FV module, read/write signals and 
data. The width of the address, command id, and data 
is adjustable. The CPU is always the master of the bus 
and it is connected to the TB-bus via the CPU-adapter. 
All transaction interpreters are connected to the TB-
bus. The CPU as master receives data from the inter-
preters by polling. For higher efficiency, the use of the 
interrupt port of the CPU instead is possible with 
modified instruction set. 
This structure allows the synchronization of any num-

 

Figure 3 The new architectural approach 

 

Figure 4 I²C interpreter modeled using TBV 
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ber of transaction interpreters, e.g. the approach is 
scalable with the number of attached FV modules. The 
synchronization procedure is similar to an event-based 
synchronization. The CPU handles requests of the FV 
modules and drives the synchronization mechanism. 
As described in Figure 4, the transaction interpreter 
includes a standard TB-bus interface. The TB-bus in-
terface needs to provide asynchronous communication 
with the TB-bus since the TB-bus and the transaction-
interpreters does not necessarily run with the same 
clock speed. The second part of transaction-
interpreters can be called DUT driver. The driver part 
in the transactor interpreter is connected to the part 
“TB-bus Interface” (see Figure 4) and implements the 
specific protocol which is provided by the transaction 
interpreter. Here, we use I²C. The designer or verifica-
tion engineer implements this protocol-specific part 
because intimate knowledge about the DUT-interfaces 
is required. Transaction interpreters need to be synthe-
sizable. 
The loop is closed between CPU, FV module, DUT, 
and CPU, again, by having the interrupts processed by 
the CPU itself, e.g. the DUT triggers interrupts which 
are processed by interrupt service routines of the 
CPU. 

5 Example 

We used our approach to verify two designs: a Java 
processor and a TV sound block for high-end TV so-
lutions. 

5.1 Java Processor 

As a starting point to see the environment running, we 
used a Java processor [9] which is controlled by the 
I²C interface. Figure 5 shows the FV environment for 
the Java processor. 
Therefore, the FV environment contains only one 
transactor and proves the feasibility of the concept in 
general. I²C-transactions are initiated in the C-
program of the CPU by using function calls as it could 
be „i2c_write“. Function calls send the communica-
tion requests via the TB-bus to the I²C FV module that 
generates signals in order to stimulate the I²C data in-
terface of the DUT. Following program code gives an 
example: 
 
    main() 
    { unsigned char data[3], result; 
 
    init_ports();        //init CPU-Ports 
    data[0] = 0;        //defines Operation: add 
    data[1] = 35;       //Operand 1 
    data[2] = 64;       //Operand 2 
 
    i2c_write(32, 3, data);    //execute operation 
    i2c_read (32, 1, &result); //read result 
    } 
 
Figure 6 shows the waveform signal for the above 
shown C-program example. The first transaction to the 
I²C interpreter with tb_address=4, tb_id=1 and 
tb_data=32 brings the I²C interpreter to open the I²C 
bus in write mode with the I²C address 32. The 
following three transactions with tb_id=3 write three 
bytes to the Java processor. The fifth transaction 
closes the I²C bus. The last three transactions open the 
I²C bus in read mode again, read one byte and close 
the I²C bus. 
 

 

Figure 5 Schematic of the FV environment for a Java 
processor 

 

 

Figure 6 Signal Waveform of Program Example 
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5.2 High-end TV Sound Block 

The 1-to-n transaction approach and the investigation 
of typical traffic on the TB-bus has been tested with 
the following example, see Figure 7. The sound block 
consists of the interfaces I²D, SIF, I²S source, and I²S 
drain. The PI-bus interface controls DUT, all needed 
data sources are controlled by other interpreters. Due 
to the complexity of the ADOC-core RTL level soft-
ware verification requires 3 to 5 minutes for just 3 au-
dio frames. This should be contrasted with the frame 
rate of 48 KHz. Therefore, DUT and the synthesized 
part of the verification environment have been trans-
ferred to a simulation accelerator, requiring less than 
one person week and yielding a simulation speedup of 
40.  This is about the same as has been achieved by a 
hardcoded VHDL testbench but with much greater 
flexibility. For example, now we were able to control 
the sound by software during verification. 

6 Evaluation 

We use a standard TB-bus that allows a scalable FV 
environment setup and leads to a point-to-multipoint 
TBV strategy (traditional definition for transactor sees 
in [6]). This can be achieved by separation of control 
flow (TB processor) and data flow (transaction-based 
interface) in the FV environment.  
The more fixed components are in the FV environ-
ment, the more benefit can be gained from reuse. 
Minimum effort is the initial setup of the FV environ-
ment for an application/project. The number of dedi-
cated transaction interpreters available will increase as 
the approach has been accepted and is used in prac-
tice. There could be the restriction that the transaction 
interpreter is dedicated to a certain FV platform which 
would limit the reuse benefit. 
The CPU’s C-programs controls the verification, e.g. 
extended programming structures (loops, subroutines, 

branches, pointer, etc.) can be used. Today, this is only 
possible with verification tools that execute the test-
bench activity on a workstation and cannot be 
downloaded to a FV platform and limits speed. 
Table 1 compares the new approach against tradi-
tional TBV methodology and shows the advantages of 
the new approach. 
 
 Traditional 

TBV 
New 

approach 
High level verification 
task description 

Yes Yes 

Standard interface to 
transaction-interpreters 

No Yes 

Communication structure No Yes 
Synchronization 
mechanism 

No Yes 

Synthesizable No Yes(*) 
Reuse code and  
interpreters 

Yes Yes 

Tool dependent Yes No 
Portable to different FV 
Platforms 

No Yes 

* restricted by data I/O of FV platform 

Table 1 Comparison of a traditional TBV and the new 
approach 

7 Conclusion 

We have introduced a generic architecture for FV en-
vironments that merges the methodology of transac-
tion-based verification and synthesizable FV environ-
ments. The benefits of this new approach are the ex-
tensive reusability of FV modules.  
Using the transaction-based methodology in combina-
tion with the synthesizable testbench approach offers 
additional advantages: a small processor as transactor 
communicates with multiple transaction interpreters 
via a standardized TB-bus system. The use of a small 
RISC processor and its software development tools 
result in the advantage that programs in high-level 
language (C) control verification runs, e.g., transac-
tions are initiated by a C-program that can be reused 
between FV environments. The FV environment is 
scalable since additional FV components can easily 
connect to the TB-bus and just a C-program needs to 
be adapted. 
The synthesizable TB-bus system takes care about the 
communication in the FV environment. The attached 
protocol ensures the data communication between the 
transactor (processor) and transactor interpreters as 
well as synchronization between transactor interpret-
ers. Giving the processor the ability to handle inter-
rupts which return from DUT closes the loop between 
processor and DUT. 
Processor and communication structure are synthesiz-
able, e.g. their representation as a netlist can be easily 

 

Figure 7 Schematic of the FV environment for a high-
end TV sound block (ADOC) 
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mapped onto different FV platforms. The limitation of 
the portability is given by the method how stimuli data 
is delivered to and results are fetched from the FV 
platform (ASIC emulation, FPGA prototyping, and 
simulation acceleration). Furthermore, the implemen-
tation of memory differs between the different FV 
platforms. 

8 Outlook 

Having such an approach, the next challenge is the 
deployment of the methodology and installation of the 
reuse database. Reuse is only applicable when engi-
neers use the approach and contribute to the reuse da-
tabase. Defining generic interfaces for the data stimuli 
(in the described approach we separated control and 
data flow) and identifying appropriate technologies in 
order to implement these interfaces for certain FV 
platforms will complete the approach. These inter-
faces have been described as “partly re-usable, e.g. for 
the same FV platform” in the description before. 
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