
A New Synthesizable Architecture Approach for Verification
Environments Applying Transaction-based Methodology
Raimund Brackebusch*, Steffen Müller, Gabriel Sok-Ye Sokomak, Thorsten Wermke, Frank Grassert*, Dirk
Timmermann*, Philips Semiconductors GmbH; *University of Rostock , Germany

Abstract

This paper describes the architecture for a generic functional verification (FV) environment that can be applied to
different FV platforms (HDL simulation, simulation acceleration, ASIC emulation, and FPGA prototyping). The
approach benefits from the reduction of setup time of the FV environment and minimization of transfer time to
another FV platform. This can be achieved by extensively employing reuse methodologies for the components in
FV environments. Furthermore, the transaction-based methodology supports the creation of stimuli on a higher
abstraction level. Stimuli can be re-applied at different FV platforms. The design of a synthesizable FV environ-
ment speeds up the FV run itself. This novel approach combines three test strategies: synthesizable testbenches,
transaction-based verification (TBV), and a dedicated architecture for FV environments independent from the FV
platform. It has been successful qualified in several industrial applications.

1 Introduction

Continuously increasing chip design complexity re-
quires new ways for the setup of functional verifica-
tion (FV) in order to reduce effort and time because a
typical chip development requires more than one FV
platform to perform all necessary checks. Interactively
providing complex stimuli to the device-under-test
(DUT) in various verification runs on different FV
platforms challenges design teams. The overall effort
for the setup and performance of FV already takes up
to 70% of the total development time of the chip. This
results in the main question: what functionality is nec-
essary to be checked and what can we afford, given
limited development time and resources.
Some publications dealt with a FV outlined in [1] re-
sulting in the fact that the more carefully FV is plan-
ned, the more effectively FV can be performed. This
is certainly right. However, introduction of a generic
architecture for a FV environment is the key to apply
reuse, to raise the transparency level of stimuli, and to
be able to follow the same architectural approach for
different FV platforms. Different FV platforms (simu-
lation acceleration, ASIC emulation or FPGA prototy-
ping) are employed to achieve speed-up and certify
the ability to see all signals within the chip design. A
synthesizable approach allows mapping the
architecture onto the different FV platforms and veri-
fication time decreases with the speed-up of the used
FV platform.
Cohen presented in [2] a transaction-based verifica-
tion (TBV) methodology. This approach is tool-
independent and defines exactly the boundary between
the reusable architecture approach and the application
specific part (mostly interfaces). However, the appli-
cation specific part of the FV environment reflects

back to the used FV platform, e.g. reuse can only be
applied between FV environments which base on the
same FV platform.
This paper presents an architecture of a generic FV
environment which is applicable in different FV plat-
forms. First, we briefly review the state-of-the-art of
FV methodologies. Next, we present our strategy and
the concept of a FV architecture with mainly synthe-
sizable components. The next section describes two
different FV environments which show the realization
of the presented approach. After evaluation, we finish
with the conclusions and outlook.

2 Functional Verification Today

The current chip (hardware) design process can be
roughly described with the following stages that start
with the specification1. This is coded in an RTL model
that needs to be simulated with a HDL simulator re-
quiring a testbench. The process continues with the
logic synthesis that ends up with a netlist and needs to
be functionally verified, as well. Facing current chip
design complexity, the designer switches to another
FV platform (Sim Accelerator, ASIC emulation, FPGA
prototyping) that requires a further FV environment
which usually needs to be built up anew. The delivery
of engineering samples finishes the FV part of the
chip-design process. This is when the “silicon valida-
tion” phase starts.

1 To short cut the process description, it has been as-
sumed that feasibility study, HW/SW partitioning, and
the system-reference modelling has already been done
and ended up in the specification.

The FV platforms base on two groups of FV method-
ologies: either testbench (TB) or a target system (TS).
Transferring the chip design to a new FV platform im-
plies an entirely new FV environment. Typically, pro-
ject management argues rather to avoid the usage of
the further FV platform because of setup time and ef-
fort reasons than using it even if it would bring a sig-
nificant value to the development process.
Consequently, the challenge is to reduce overall effort
for setup and performance of FV. Also, the effort to
transfer the design to another FV platform must be re-
duced because chip complexities require having mul-
tiple, heterogeneous FV platforms.
There are several approaches known to set up a FV
environment [3]. Some directly relate to a commercial
general-purpose verification tool (see Figure 1), other
approaches relate to a certain FV methodology. The
usage of a verification tool usually implies a tool-
related FV environment which offers possible speed-
up compared with slow conventional HDL simulation.
Others use partly synthesizable FV modules where the
synthesized part can be downloaded onto the dedi-
cated FV hardware or use transaction-based verifica-
tion which is today still tool dependent. Here, the ad-
vantage is raising the abstraction level for the stimuli

[4], see Figure 2, and use tool dependent speed-up
technologies2.
Typically, reuse takes place in design teams between
different generations of the chip or between projects
that are similar with respect to chip application up to a
certain level. Switching from one to another FV plat-
form3 does necessarily result in the setup of a new FV
environment where reuse can seldom be applied be-
tween different FV environments.

3 Concept

Four items have been identified to improve the pro-
ductivity, e.g. shorten time-to-market, of the FV phase
in a chip development as mentioned in the previous
section:

- Reusability
- High-level test creation
- FV platform independence
- Speed of the verification run

Reuse in chip design itself is today the key to a higher
productivity. We can learn from this and apply reuse
methodologies to the components of the verification
environment. The first step is then to unitize the FV
environment. In the next step, the interfaces between
these modules are defined and standardized. FV mod-
ules can be cut between different abstraction levels of
stimuli in general or between different types of stimuli
e.g. data or control signals. The idea of transaction-
based verification (TBV) generally supports both
modularization approaches, e.g. is independent from
chosen architecture.
A FV module in TBV methodology is divided into
high transaction-level and low signal-level. At signal-
level, these transactions or tasks are executed, inter-
preted, and instantly a corresponding sequence of bi-
nary values is created and propagated to the device
under test (DUT). The modules that create transac-
tions on the high level are called transactors, modules
that interpret the transactions are called transaction
interpreters [2]. For each FV module which provides
an interface of the DUT a single transactor as well as
transaction interpreter is to be modeled.
Transactors are used to initiate data transfers that are
executed by the corresponding transaction-
interpreters. Often, but not necessarily, transactors are
modeled in high-level verification languages [7], [8].
The approach described in this paper avoids the usage
of a verification language for the first moment in order

2 Commercial suppliers drive most TBV solutions.
That results in a need to use a certain tool and/or FV
platform.
3 The need for multiple FV environments in chip de-
velopments results from the continuously increasing
complexity of the design as mentioned above in this
paper.

Figure 1 Tool-related verification approach

Figure 2 Transaction-based verification approach

General Purpose “Verification Tool” on Workstation

FV Platform

Binary

DUT

Binary Binary

Testbench
(includes behavioral code and file i/o)

InterfaceInterfaceInterface

“TBV Tool” (relates to FV Platform) on Workstation

FV Platform

Transaction-
Interpreter

Binary

DUT

Transactor

Transaction-
Interpreter

Binary Transaction-
Interpreter

Binary

Transactor

Transactor

Data
base

Interface Interface Interface

to keep tool and platform independence. Verification
language may come in when the platform-dependent
FV module is going to be implemented.
To verify complex designs, the synchronization of
tasks / transactions has to be supported. This is diffi-
cult since multiple interfaces/transactors to the DUT
need to be modeled. The described approach solves
this by using a single, central transactor connected to
all transaction interpreters via a standardized commu-
nication structure called testbench bus (TB-bus) (see
Figure 3). All transaction and transfer operations are
initiated from this central transactor, so that the syn-
chronization of multiple transaction interpreters is fea-
sible. The central transactor is called TB-processor
and implemented as a small RISC processor. Transac-
tor, transactor commands, transaction interpreters, and
TB-bus are fully reusable.
For each platform a platform-specific environment is
necessary. To reuse a FV environment on different
platforms with a minimum effort, the FV environment
has to be as much as possible platform-independent.
All synthesizable components of a verification envi-
ronment are FV platform independent. For that rea-
son, our approach is to build up an environment that is
mostly synthesizable. Since synthesizable components
can be integrated into FV platforms, less communica-
tion between tool interfaces (example: simulation ac-
celerator hardware and connected HDL simulator) is
required. In conjunction with hardware-based FV plat-
forms a significant speed up of the FV environment
can be achieved. Nevertheless, the implementations of
memory and I/O from and into the FV platform are
specific to the FV platform.

4 Strategy

To realize the idea of a synthesizable TBV-based FV
environment we have to modularize [3] and to stan-
dardize [5] the environment.

We use a RISC-CPU as single transactor for all trans-
action-interpreters. In conjunction with a C-Compiler,
we are capable to achieve the same abstraction level
as a traditional transaction-based environment. There
are commercial testbench languages which offer
higher flexibility for a description than the C-language
but we pursue a tool and platform independent ap-
proach. In the future, with an existing methodology, an
optimal testbench language can be applied. Moreover,
the CPU offers a flexibility that is requested by the
functional complexity of the DUT. The CPU initiates
all transactions and is responsible for the control flow
inside the FV environment, i.e. the verification run is
controlled by the C-program that is fed into the CPU.
The transactions are transferred from the CPU to the
transaction-interpreters via the testbench bus (TB-
bus), see Figure 3. Such interpreters can also imple-
ment the interfaces to the required data for DUT
which have to be provided from the verification plat-
form. The CPU realizes a central unit to control and
synchronize the interfaces if needed. The main advan-
tage is that the total verification flow is described and
documented in a single program. This again supports
the reusability on different platforms with the same
architecture of the verification environment.
The TB-bus is a synchronous, parallel, and standard-
ized bus that transfers commands, result data from an
operation, and synchronization events to the FV mod-
ules. The TB-Bus consists of four signals. These are
the address of the transaction interpreter, the dedicated
command id of FV module, read/write signals and
data. The width of the address, command id, and data
is adjustable. The CPU is always the master of the bus
and it is connected to the TB-bus via the CPU-adapter.
All transaction interpreters are connected to the TB-
bus. The CPU as master receives data from the inter-
preters by polling. For higher efficiency, the use of the
interrupt port of the CPU instead is possible with
modified instruction set.
This structure allows the synchronization of any num-

Figure 3 The new architectural approach

Figure 4 I²C interpreter modeled using TBV

Testbench-Bus: Control & Sync Data

DUT

Transactor
(RISC-CPU)

C-API

(C-Program)

(Binary Data)

Software to Control the FV Run

Platform to Perform the FV Run

Events from DUT
(Interrupts)

(Binary Data) (Binary Data)

Transaction
Interpreter

Transaction
Interpreter

Transaction
Interpreter

TB-Bus Interface

T
B

-C
lo

ck

T
B

-R
es

et

A
dd

re
ss

R
ea

d/
W

rit
e

D
at

a

T
B

-B
us

R
ea

d/
W

rit
e

ID

ID

D
at

a-
O

ut

D
at

a-
In

I-
R

eq

I-
A

ck

Ack-InAck-Out

I2C-Driver

S
D

A

S
C

L

I2
C

-C
lo

ck

T
B

-
R

es
et

I2C-Interface

ber of transaction interpreters, e.g. the approach is
scalable with the number of attached FV modules. The
synchronization procedure is similar to an event-based
synchronization. The CPU handles requests of the FV
modules and drives the synchronization mechanism.
As described in Figure 4, the transaction interpreter
includes a standard TB-bus interface. The TB-bus in-
terface needs to provide asynchronous communication
with the TB-bus since the TB-bus and the transaction-
interpreters does not necessarily run with the same
clock speed. The second part of transaction-
interpreters can be called DUT driver. The driver part
in the transactor interpreter is connected to the part
“TB-bus Interface” (see Figure 4) and implements the
specific protocol which is provided by the transaction
interpreter. Here, we use I²C. The designer or verifica-
tion engineer implements this protocol-specific part
because intimate knowledge about the DUT-interfaces
is required. Transaction interpreters need to be synthe-
sizable.
The loop is closed between CPU, FV module, DUT,
and CPU, again, by having the interrupts processed by
the CPU itself, e.g. the DUT triggers interrupts which
are processed by interrupt service routines of the
CPU.

5 Example

We used our approach to verify two designs: a Java
processor and a TV sound block for high-end TV so-
lutions.

5.1 Java Processor

As a starting point to see the environment running, we
used a Java processor [9] which is controlled by the
I²C interface. Figure 5 shows the FV environment for
the Java processor.
Therefore, the FV environment contains only one
transactor and proves the feasibility of the concept in
general. I²C-transactions are initiated in the C-
program of the CPU by using function calls as it could
be „i2c_write“. Function calls send the communica-
tion requests via the TB-bus to the I²C FV module that
generates signals in order to stimulate the I²C data in-
terface of the DUT. Following program code gives an
example:

 main()
 { unsigned char data[3], result;

 init_ports(); //init CPU-Ports
 data[0] = 0; //defines Operation: add
 data[1] = 35; //Operand 1
 data[2] = 64; //Operand 2

 i2c_write(32, 3, data); //execute operation
 i2c_read (32, 1, &result); //read result
 }

Figure 6 shows the waveform signal for the above
shown C-program example. The first transaction to the
I²C interpreter with tb_address=4, tb_id=1 and
tb_data=32 brings the I²C interpreter to open the I²C
bus in write mode with the I²C address 32. The
following three transactions with tb_id=3 write three
bytes to the Java processor. The fifth transaction
closes the I²C bus. The last three transactions open the
I²C bus in read mode again, read one byte and close
the I²C bus.

Figure 5 Schematic of the FV environment for a Java
processor

Figure 6 Signal Waveform of Program Example

Core

I2C-Interface

TB-Bus

ROM

DUT

ROM

RAM

Flash
Table 1Table 2 Stack

MMU

SDA SCL

Clock
Block

Reset

Clock

I2C-Clock

RISC-CPU

CPU-Adapter

5.2 High-end TV Sound Block

The 1-to-n transaction approach and the investigation
of typical traffic on the TB-bus has been tested with
the following example, see Figure 7. The sound block
consists of the interfaces I²D, SIF, I²S source, and I²S
drain. The PI-bus interface controls DUT, all needed
data sources are controlled by other interpreters. Due
to the complexity of the ADOC-core RTL level soft-
ware verification requires 3 to 5 minutes for just 3 au-
dio frames. This should be contrasted with the frame
rate of 48 KHz. Therefore, DUT and the synthesized
part of the verification environment have been trans-
ferred to a simulation accelerator, requiring less than
one person week and yielding a simulation speedup of
40. This is about the same as has been achieved by a
hardcoded VHDL testbench but with much greater
flexibility. For example, now we were able to control
the sound by software during verification.

6 Evaluation

We use a standard TB-bus that allows a scalable FV
environment setup and leads to a point-to-multipoint
TBV strategy (traditional definition for transactor sees
in [6]). This can be achieved by separation of control
flow (TB processor) and data flow (transaction-based
interface) in the FV environment.
The more fixed components are in the FV environ-
ment, the more benefit can be gained from reuse.
Minimum effort is the initial setup of the FV environ-
ment for an application/project. The number of dedi-
cated transaction interpreters available will increase as
the approach has been accepted and is used in prac-
tice. There could be the restriction that the transaction
interpreter is dedicated to a certain FV platform which
would limit the reuse benefit.
The CPU’s C-programs controls the verification, e.g.
extended programming structures (loops, subroutines,

branches, pointer, etc.) can be used. Today, this is only
possible with verification tools that execute the test-
bench activity on a workstation and cannot be
downloaded to a FV platform and limits speed.
Table 1 compares the new approach against tradi-
tional TBV methodology and shows the advantages of
the new approach.

 Traditional

TBV
New

approach
High level verification
task description

Yes Yes

Standard interface to
transaction-interpreters

No Yes

Communication structure No Yes
Synchronization
mechanism

No Yes

Synthesizable No Yes(*)
Reuse code and
interpreters

Yes Yes

Tool dependent Yes No
Portable to different FV
Platforms

No Yes

* restricted by data I/O of FV platform

Table 1 Comparison of a traditional TBV and the new
approach

7 Conclusion

We have introduced a generic architecture for FV en-
vironments that merges the methodology of transac-
tion-based verification and synthesizable FV environ-
ments. The benefits of this new approach are the ex-
tensive reusability of FV modules.
Using the transaction-based methodology in combina-
tion with the synthesizable testbench approach offers
additional advantages: a small processor as transactor
communicates with multiple transaction interpreters
via a standardized TB-bus system. The use of a small
RISC processor and its software development tools
result in the advantage that programs in high-level
language (C) control verification runs, e.g., transac-
tions are initiated by a C-program that can be reused
between FV environments. The FV environment is
scalable since additional FV components can easily
connect to the TB-bus and just a C-program needs to
be adapted.
The synthesizable TB-bus system takes care about the
communication in the FV environment. The attached
protocol ensures the data communication between the
transactor (processor) and transactor interpreters as
well as synchronization between transactor interpret-
ers. Giving the processor the ability to handle inter-
rupts which return from DUT closes the loop between
processor and DUT.
Processor and communication structure are synthesiz-
able, e.g. their representation as a netlist can be easily

Figure 7 Schematic of the FV environment for a high-
end TV sound block (ADOC)

ADOC-Core

I2S-
Interface
(Source)

DUT

ROM

TB-Bus

6 xI2S- Channels

Clocks & Reset
Generators

I2D-
Interface

SIF-
Interface

PI-Bus
Interface

I2S-
Interface

(Drain)

4x I2D Channels 6x I2S- Channels

Clocks

RISC-CPU

CPU-Adapter

Data Data Data Data

mapped onto different FV platforms. The limitation of
the portability is given by the method how stimuli data
is delivered to and results are fetched from the FV
platform (ASIC emulation, FPGA prototyping, and
simulation acceleration). Furthermore, the implemen-
tation of memory differs between the different FV
platforms.

8 Outlook

Having such an approach, the next challenge is the
deployment of the methodology and installation of the
reuse database. Reuse is only applicable when engi-
neers use the approach and contribute to the reuse da-
tabase. Defining generic interfaces for the data stimuli
(in the described approach we separated control and
data flow) and identifying appropriate technologies in
order to implement these interfaces for certain FV
platforms will complete the approach. These inter-
faces have been described as “partly re-usable, e.g. for
the same FV platform” in the description before.

9 References

[1] James, P.: The Five-Day Verification Plan. Syn-
opsys User Group SNUG, Boston, 2000

[2] Cohen, B.: Transaction-Based Verification in
HDL. www.vhdlcohen.com

[3] Bergeron, J.: Writing Testbenches – Functional
Verification of HDL Models. Kluwer Academic
Publishers

[4] Cadence: Transaction-Based Verification White
Paper. www.cadence.com

[5] Rashinkar, P., Paterson, P., Singh, L.: System-on-
a-chip Verification, Methodology and Tech-
niques. Kluwer Academic Publishers

[6] Müller, S., Hasewinkel, O.: A Framework for the
Reuse of Testbenches for Signal Path Designs.
Design and Test Conference in Europe, DATE
2000, User Forum

[7] Cadence: A Verification Methodology That En-
ables Reuse. www.cadence.com

[8] Specman Elite: Verisity Inc, www.verisity.com
[9] Golatowski, F., Preuss, S., Ploog, H., Geithner,

T., Cap, C., Timmermann, D.: Integration of Java
Processor Core JSM into SmartDev(ices). 8th
IEEE International Conference on Emerging
Technologies and Factory Automation, Proceed-
ings, ISBN: 0-7803-7241-7, pp. 699-702, Anti-
bes Juan les Pins (France), Oct. 2001

