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Abstract— After deployment of sensor nodes, the 

software of sensor nodes usually cannot be changed 
anymore. Thus, dynamical changing requests to the network 
and adaptations of the evaluation methods are not possible. 

We present a service architecture (RASA) for small, 
mobile, and resource-critical sensor networks. This 
architecture features software changes by injecting services 
at runtime. These services are executed on the sensor nodes. 
The design of RARA simplifies data aggregation and locally 
collaboration of sensor nodes. On this way, it is possible to 
extract implicit information of the network and to adapt the 
software to dynamically changing processes. Hence, RASA 
is able to react and to change the network behavior 
depending on the current conditions. 

The proposed service architecture is optimized to execute 
simple, but local services. RASA meets the strong 
requirements of sensor networks regarding small resources, 
e.g. low memory consumption, supporting mobility, and 
robustness. Additionally, it supports the reusability of 
existing services or parts of services.  

 
Index Terms— Services, Service Architecture, Wireless 

Sensor Networks 

I.

II.

 Introduction 

Miniaturization technologies and advances in 
communication technologies lead to development of 
extreme small, cheap, and smart embedded devices, so-
called sensor nodes. Hundreds or thousands of these 
sensor nodes build a sensor network [1]. These sensor 
nodes are deployed randomly in mostly impenetrable 
target terrains to measure a specific set of conditions.  
Main task of sensor nodes is measuring the environment 
conditions with build-in sensors. One simple example is 
gathering the temperature around a node. If a given 
threshold is passed, an event should be triggered to 
inform other nodes or the base station. That means, 
sensor nodes simply measure and transmit data as 
assumed in most of the application scenarios. But in 
reality, this is inefficient due to missing data aggregation. 
In worst-case, hundrets or thousands of messages are 
transmitted and especially sensor nodes close to the base 
station would resign very quickly due to exhausted 
batteries caused by a huge number of transmissions. 
Nevertheless in case all messages were received by the 
base station, the evaluation of all messages would require 
very huge resources. As an example in a sensor network 

with n sensor nodes, exact positioning of nodes requires 
several n*n matrices. Moreover to detect a movement, the 
base station must be recalculate the position continiously 
based on incoming sensor node’s data. Thus, transmitting 
all measurements to the base station is inappropriate. A 
local data aggregation between a group of nodes is 
necessary. 
Data aggregation algorithms can be implemented directly 
into software of sensor nodes. This software is usually 
programmed into flash memory. But sometimes, 
environment conditions are different from the expected 
ones and flashed algorithms may be working wrong. In 
other cases, it is necessary to program additional 
evaluation algorithms to determine implicit data which 
was unknown before deployment. This can be unexpected 
velocity behavior, surprising termination of nodes, 
building of mixed groups, or any other phenomenon. To 
determine exactly what happens in the network, the 
software must be adjustable or changeable. Hence, all 
nodes require software updates to fulfil new requests. But 
a collection of all nodes to reprogram new adapted 
software is economically senseless. Thus, software on 
sensor nodes must be adaptable at runtime in the terrain. 
One possibility to support dynamical requests and data 
aggregation at runtime is based on mobile services. 
In this paper, we present a new service architecture which 
considers special basic conditions in wireless sensor 
networks and supports highest flexibility within these 
close boundaries. 

The remainder of this paper is organized as follows. 
Section II introduces services and considers the 
requirements of service architectures in mobile wireless 
sensor networks. Next, Section III surveys already related 
data collection protocols and service architectures 
supporting data aggregation and downloadable executable 
code. Further on in Section IV, we describe our service 
architecture followed by Section V. This section 
addresses the runtime behavior and lifetime aspects of a 
service. Finally, the paper ends with a conclusion. 

 Preliminaries 

A service is a piece of software to reply remote requests, 
to interact between devices, and to hide the heterogeneity 
of a distributed system. Services are a growing 



technology in mobile ad hoc networks. But in sensor 
networks, services hit upon several barriers caused by 
small resources, e.g. small batteries and energy 
consumption respectively, few program memory, very 
few data memory, highly specialized and tiny operating 
systems. Thus, saving messages to temporary buffers for 
retransmission or storing huge service data is nearly 
impossible. Further, development of one service 
architecture for sensor networks is restricted by different 
and complex memory architectures of microcontrollers 
used in the sensor nodes, lot of memory types with 
different addressing schemes, separation or combination 
of program and data memory, and argument delivery to 
subfunctions (stack based, memory based, or register 
based). 
Based on our analysis, a service architecture for sensor 
networks must meet their special needs compared to 
resource-uncritical ad hoc networks, must be highly 
optimized regarding the strong requirements, and 
therefore fulfil the following criterions: 
- Supporting new services at runtime 
- Interaction and collaboration of services between 

sensor nodes 
- Autonomously running services 
- Extraction of implicit information 
- Simple programming of services with large flexibility 
- Fast and resource-aware seeding of services  
- Low usage of data memory 
- Few data transmissions 
- Specialized to the specific memory architecture 
- Reusage of existing program modules 

III.

IV.

 Related Work 

There are already some service architectures or data 
aggregation schemes for sensor networks proposed. All 
of them match most of the introduced criterions but not 
all. 
MATÉ [2] is a byte-code interpreter for TinyOS [3]. It is 
a small communication-centric virtual machine designed 
as a component for the system architecture of TinyOS. 
The motivation to develop MATÉ was to solve novel 
problems in sensor network management and 
programming, in response to changing tasks, e.g. 
exchange of the data aggregation function. However, the 
associated inevitable reprogramming of hundreds or 
thousands of nodes is restricted to energy and especially 

storage resources of sensor nodes. Furthermore, the 
network is limited in bandwidth and network activity as a 
large energy draw. MATÉ attempts to solve these 
problems, by propagating small code capsules through 
the sensor network. The virtual machine of MATÉ 
provides the possibility to compose a wide range of 
sensor network applications by using a small set of 
primitives. In MATÉ, these primitives are one-byte 
instructions and they are stored into capsules of 24 
instructions together with identifying and versioning 
information. In contrast to our design issues, MATÉ lacks 
the flexibility to use existing system components and it is 
limited by the available data memory to store the capsules 
and the runtime data. Further, it is difficult to use MATÉ 
in conjunction with complex data aggregation schemes or 
group building algorithms. Thus MATÉ is very useful for 
very small and easy applications. 
TinyDB is a query processing system for extracting 
information from a network of TinyOS sensor nodes [4]. 
TinyDB provides a simple, SQL-like interface to specify 
the kind of data to be extracted from the network along 
with additional parameters, e.g. the data refresh rate. The 
primary goal of TinyDB is to prevent the user from 
writing embedded C programs for sensor nodes or 
composing capsules of instructions regarding to MATÉ. 
The TinyDB framework allows data-driven applications 
to be developed and deployed much more quickly as 
developing, compiling, and deploying a TinyOS 
application. Given a query specifying the data interests, 
TinyDB collects data from sensor nodes in the 
environment, filters and aggregates the data, and routes it 
to the user autonomously. The network topology in 
TinyDB is a routing tree. Query messages flood down the 
tree and data messages flow backup the tree participating 
in more complex data query processing algorithms. Thus, 
the flexibility of TinyDB is limited to the TinyDB 
implementation. But more important, TinyDB is simply a 
query processing system and not a service infrastructure 
to interact between neighboring sensor nodes. Similar 
approches are Cougar [5] and SINA [6]. 

 Resource-aware Service Architecture 

In this paper, we present a service architecture (RASA) 
which meets the introduced requirements (changing 
runtime behavior, collaboration of nodes, extracting 
implicit data and others). This service architecture uses 

Constant Code and Data Private DataPublic Data

Service

- initialization settings
- local calculation results

- service description
- executable code
- default definitions

- internal data, e.g. current 
state

- aggregated data

Data to be transmitted !  
Figure 1. Structure of a service in RASA. It is divided into constant (executable) code/data, public data, and private data. Both, constant code and 

public data, are designed to be transmitted to neighboring nodes within a service message. 



services which are injected to the network by a node 
(inquirer) at runtime. A service is forwarded to other 
nodes and installed as well as executed successive on all 
nodes of the network. After installation, services are 
accessible by other nodes and other services, too. Due to 
small available data memory at sensor nodes and the 
relatively high energy costs of data memory compared to 
flash memory, it is important to reduce consumption of 
data memory. Therefore, our objective is to store the code 
and most of data in flash memory.  
A service is usually characterized by handling the 
heterogenity of a network and is executed on top of the 
middleware layer lying upon different operating systems. 
We tightened this definition to meet the special 
conditions regarding to the limited resources in wireless 
sensor networks. In our view, a special middleware layer 
on top of the operating system, as the well known 
CORBA [7], to support completely different devices is 
oversized and not applicable. In principe, a sensor 
network has only one main task, it should measure and 
aggregate data followed by a transmission. Therefore, a 
sensor network is build of homogeneous sensor nodes to 
reduce production costs, to ease programming of nodes as 
well as to reduce adaptation effort. There is no reason to 
deploy and support different types of sensor nodes. In our 
view, most node applications will use same or similar 
hardware and run applications adapted for the 
underlaying hardware. Thus, our middleware layer has 
reduced functionality. It contains basically a service 
dispatcher and hides the driver layer. The service 
dispatcher manages, connects, and runs services. The 
resulting middleware layer does not hide a heterogenic 
network, but therefore, it provides an interface to services 
which is significantly more relevant than hiding at all 
costs. 

A. Services 

Mobile agents are tiny programs which move through the 
network and are executed on the nodes. If necessary, 
these mobile agents are forwarded to neighboring nodes 
and executed, too. Our service architecture is based on 
the concept of mobile agents [8]. 
In our service architecture, a service is divided into three 
parts: constant code or data, private data, and public data 
(Figure 1). First, constant data contains executable code 
(mobile agent) either as native code or as virtual code 
designed for a virtual machine. Native code has, 
compared to virtual code, the advantage that the service is 

extremely fast and has a very high degree of freedom 
caused by direct hardware programming. Constant data 
are definitions and defaults to initialize the local instance 
of a service. Second, public data contains information 
representing the state or current results of the service 
instance. These data are public and therefore accessible 
by other nodes. In contrast, private data is not accessible 
by other nodes. It is used to store measurement values or 
internal variables. 
Constant code and data as well as public data are 
transmitted by one service message from one node to 
another (Figure 2). Therefore, public data must be 
serializable. It must not contain data pointers or other 
references to local conditions. Additionally, public data is 
relocatable. After receiving a message, constant code is 
programmed into the non-volatile flash memory. The 
runtime system provides data memory required for 
private and public data. Received public data is used to 
optimize start conditions of the service and to aggregate 
data. 
The selection which data is assigned to public or private 
data highly depends on the service. Usually, measured 
data is stored in private data memory and aggregated data 
is stored in public data memory to share these results with 
other nodes. Nevertheless, an important design criterion 
is the reduction of message’s length. 

B. Modules 

According to our requirements, our service infrastructure 
is designed to reuse existing software components. In our 
context, these components are called modules. A module 
is a small piece of executable code with public as well as 
private data. Modules can be string together to fulfil a 
specific task. At least one module is required per service. 
Figure 3 demonstrates a service built up of four modules 
(analysis, grouping, aggregation, and transmission). The 
modules are usually executed in sequence or in any order 
if specified. Each of these modules has its own private 
and public data area within the service’s data space. Thus, 
if the service is transmitted to another node, the complete 
code of all modules and the public data block are 
transmitted as exemplified in Figure 2. 
The service presented in Figure 3 denotes another nice 
feature of our service architecture – using internal 
modules. On this way, software components such as 
grouping of nodes may be outsourced, defined as internal 
modules and installed before deployment. These modules 
can be used by any installed service at runtime 

Node A with Service

Code
Private data

Public data

CodeHead Public data
Message

Node B with Service

Code
Private data

Public data

CodeHead Public data

1. Create message 3. Compare 
public data3. Install service?

Executable code

Public data

Private data

2. Transmit 
service

 
Figure 2. Creating a message (Step 1) out of service components and forwarding the service’s messages containing public code and data from node A 
to node B (Step 2). Node B installs the executable code if necessary (Step 3) and executes the code to compare node’s A public data with local public 

data (Step 4). 



simultaneously due to using different parts of the data 
memory. Internal modules must not be transmitted 
anymore, because they are enclosed within the node 
software. Thus, the size of code within a service message 
reduces significantly. 

C. Embedding a Service 

Services are managed by a service dispatcher. To store 
received services, node software holds preallocated 
pieces of flash as well as data memory. Due to the 
separation of constant code/data and public data, this 
service architecture is able to run on systems with von-
Neuman and Harvard configurations. Figure 4 shows the 
memory organization scheme for a Harvard architecture 
(8051 mircocontroller). The bold framed areas visualize 
the available memory preallocated by the node software 
to store services. If a service was received, the service 
dispatcher checks whether the service fits into the 
remaining memory space and installs the service, if 
possible. During installation, the service dispatcher sets 
the correct absolut memory pointer to access the correct 
data area. 
Figure 4 displays further, how a service is organized 
within the memory pool. It starts with a service 
description (Head: Service) which defines required data 
space, number of modules, and a unique service identifer 
(ID) to distinguish different services. After the service 
definitions, each module is described. Here, relative data 
offsets point to the public and private data memory within 
the assigned data area. The module definition further 

contains relative offsets to module-specific functions 
within the constant code area to initialize, start, and end 
the service. After the definitions, application depending 
constants and executable code follow.  
All defined offsets begin at the start of the service. Thus, 
the service dispatcher can easily calculate the physical 
addresses of the modules as well as functions. Internal 
modules are announced by a special flag which 
supplementary indicates that relative code offsets are 
added to the start address of the BIOS memory space. At 
this address, a system-wide jump table separates BIOS 
from services. On this way, different BIOS versions can 
support the same service. In most cases, internal modules 
require additional data memory. The size is determined at 
compile time and is taken into account to the data offsets 
for private and public memory areas. Thus, calling 
internal modules leads to an invocation of a BIOS 
function by using a part of the data memory assigned to 
the current running service. 

D. Service Code Reduction 

One of the challenging issues to create services is the 
reduction of the code size to prevent segmented message 
transmission. Figure 5 visualizes two steps to reduce the 
code size. First at the compilation level, the source of the 
modules is compiled to one monolithic block of code. 
The compiler removes unused or redundant components. 
It optimizes the interfaces between compiled modules and 
optimizes the data access. The application level symbol-
izes the code reduction caused by using internal modules. 
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Figure 3. Interaction between original installed node software and flashed service with access to an internal module (Grouping). The grouping 

definition of the service is only a frame which references directly to the internal grouping module. Note, the internal grouping module uses service’s 
data memory to store own data.  
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Figure 4.  Memory organization scheme for a Harvard architecture (8051 mircocontroller) of two possible services (instance 1 and instance 2). Each 

service references to an internal module. To store runtime data, this internal module was assigned to a part of the service’s data memory. 



Services in RASA using native code are written in C 
language. At source code level, all modules are more or 
less platform independent and theoretically support 
heterogeneity. They are exchangeable and therefore 
reusable in other projects or services. But after 
compilation, all modules are merged together to a 
monolithic block. Thus at this level, they cannot be 
exchanged anymore. 

Since the code size highly depends on the processor 
architecture, RASA supports virtual code, too. In this 
case, a specialized virtual machine as stated in [2] is 
required as additional component within the service 
dispatcher. 

V. Running a Service 

Before using a service, it must be compiled for the target 
hardware platform and the specific installed BIOS of the 
deployed sensor nodes. This is usually done at a PC 
which is connected to one sensor node acting as a 
gateway to the sensor network. This gateway is the 
initiator of the service. The identifier of the initiator, 
usually a MAC address, is added to the service together 
with the initiator’s service count, the number of already 
injected services by the initiator, to distinguish different 
services and to prevent running services more than once 
on remote nodes. 
After downloading the service from the PC to the 
gateway, the service is transmitted to its neighbors. All 
neighboring nodes receiving the service message behave 
as described in Figure 6. They firstly check, is this a 
service message and discard the message, if it is not. If 
the received message is an unknown service, the service 
is installed if enough memory is available. Next, the 
service is started. After finishing, the service’s code and 
the results (public data) are transmitted. Therefore, yet 
another neighboring nodes receive the service and will 

install it. Thus, the service is broadcasted to all nodes in 
the network. Moreover, transmitting service’s code and 
public data lead to a very robust behavior regarding 
service distribution. Especially in mobile sensor 
networks, sometimes unconnected sensor nodes exist due 
to separation. Presumed one uninfected node gets 
anytime a link to an already infected sensor node, this 
node will be infected, too. Thus in mobile sensor 
networks, all nodes are infected over time. 
If a service was installed correctly, the service itself acts 
as a state machine managed by the service dispatcher 
(Figure 7). The service state machine starts with the state 
Initialize Service and automatically passes over to the 
state Ready after finishing. In Ready, the service waits for 
incoming events such as incoming service messages of 
neighboring nodes, new data at sensors, or  timer 
expirations. Then, the service enters next state Init Run 
Instance to initialize one service call. In this state, the 
service call is instanciated, e.g. additional global data 
memory is acquired if needed. Further, several start 
conditions are defined to run through the modules, e.g. 
setting the module to executed first. If no error occurs, 
state Run Module is entered. In this state, the current 
module in the list of modules is executed (Figure 5). 
After execution, the module returns the number of the 
next module to be executed or EOM (End-Of-Modules). 
If another module is given, state Run Module is reentered 
and this module is executed. The looping continues until 
EOM is received. EOM signalizes the end of the service 
run. Thus, state Finish Run Instance is entered and all 
resources allocated during Init Run Instance are freed.  
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Figure 5. Code reduction levels to create small modules in services can 

be: a) the compiler system due to making one monolithic block, b) using 
internal modules to prevent unnecessary code transmission. 
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Figure 7. State machine of a service.  

In this paper, we presented the novel service architecture 
(RASA) for mobile services in wireless sensor networks. 
These mobile services are software parts including 
executable code which are injected into the network 
without previous knowledge and are executed at every 
node. Moreover, a service consists of several modules to 
support reusability of already written components and  to 
reduce service’s size by outsourcing often used 
components to the node software (BIOS). 
This architecture meets the strong requirements applied to 
sensor networks such as updating the network with new 
services heeding small resources, data aggregation and 
extracting implicit information from the network. Due to 
its design, the service architecture is applicable in 
different hardware architectures (von Neuman, Harvard) 
and guarantees highest degree of freedom in 
programming services.  

Using module numbers allows the building of a complex 
and dynamic flow charts with jumping between the 
modules depending on the runtime conditions. On this 
way, different modules can be connected without 
knowledge of each other. They only need the number of 
the next module which can be defined separately. 
Sometimes, it is necessary to remove services from all 
sensor nodes. Then, a service message is injected by the 
initiator containing the service and special flags set to a 
removal command. This flag triggers a process to remove 
the service at each receiving sensor node. After removing 
the service, the message is broadcasted again. 
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