
Devices Profile for Web Services and the REST

Guido Moritz1, Elmar Zeeb1, Steffen Prüter1, Frank Golatowski2, Dirk Timmermann1, Regina Stoll2

1Institute of Applied Microelectronics and Computer Engineering, University of Rostock

2Institute of Preventive Medicine, University of Rostock
1,218055 Rostock, Germany

{guido.moritz, elmar.zeeb, steffen.prueter, dirk.timmermann, regina.stoll}@uni-rostock.de

2Center for Life Science and Automation, 18119 Rostock, Germany
frank.golatowski@celisca.de

Abstract- For future application scenarios of resource
constrained and low cost smart cooperating objects,
miscellaneous technologies for wireless connectivity are existing
or upcoming in the near future. But further cross domain
middleware and dedicated communication protocols to provide
syntactic and semantic interoperability and not only technical
interoperability are still missing. Thus, this paper investigates on
two major candidates for IP based low power communication,
based on known and matured technologies and protocols.
Therefore, analyses and pitfalls of RESTful architectures based
on HTTP and the Devices Profile for Web Services are
presented. Furthermore, the paper discusses differences of
DPWS and RESTful design and furthermore proposes an
approach for a generic mapping of emerging Bluetooth Low
Energy technology with RESTful device architectures for
seamless and transparent connectivity.

I. INTRODUCTION

Decades of research and devolvement in the domains of
wireless sensor networks (WSN) and ad-hoc device
communication have brought miscellaneous application
scenarios like habitat monitoring [5], industrial motor
monitoring [6], structural monitoring [7], bridge monitoring
[8], volcano monitoring [9] and forest fire prediction. Newest
developments extend scenarios to home healthcare
applications.

Former networking embedded device infrastructure is
extended to low power, low cost and highly constraint smart
cooperating objects. These developments raise urgent need
for platform independent interoperability between devices
and also with higher valued services for example in the
internet. Specific domains have developed middleware
dedicated and used widely only in single domains. While
UPnP, DLNA and related technologies are established in
networked home and small office environments, the Devices
Profile for Web Services (DPWS) is widely used in the
automation industry at device level [10] and it has been
shown that they are also applicable for Enterprise integration
[11], [12]. To overcome problems of interoperability between
technologies and protocols, generic gateway architectures and
device abstraction layers are developed [13], [14]. This
allows integration of incompatible technologies like ZigBee
and Bluetooth in complex application scenarios and data
access via IP based interfaces. With the rise of IP based
communication directly in WSN [4], new device and

communication architectures are possible without need for
generic gateways and data caching intermediates.

Thus, main scope of this paper is examination of two major
candidates to be applied for IP based wireless smart
cooperating objects: Service-oriented Architectures (SOA)
and Resource-oriented Architectures (ROA) like the
Representational State Transfer (REST) style. Because Web
services (WS) are widely used as realization of SOAs, this
paper provides in detailed information about DPWS section
III, which are not published along with the DPWS
specifications. This information requires deep knowledge
about DPWS that we got by implementing DPWS1 and
during standardization process within OASIS WS-DD2.
Furthermore, the paper reveals necessary functionalities in
RESTful device architectures in section IV, which require
further research efforts. Section V discusses differences of
DPWS and RESTful HTTP designs. To not exclude non IP
based technologies, this paper proposes in section VI a new
approach for direct and generic mapping of emerging
Bluetooth Low Energy (BTLE) protocols into HTTP
protocol, widely used in RESTful applications, without the
need of caching intermediates.

II. RELATED WORK

Beside several proprietary solutions or solutions by huge
industry consortia, IP based technologies and infrastructures
for device communication have been developed. While the
Wi-Fi Alliance announced a new wireless networking
specification Wi-Fi Direct, to allow direct peer-to-peer
communication between devices without the need for
management devices, IEEE 802.11 is too expensive in terms
of energy consumption for future smart cooperating objects.
Other solutions focus on low power, low data rates and low
cost solutions to meet the resource and price constraints.

A. ZigBee
Low power, low cost, and low data rate wireless

communication are the main scope of the IEEE 802.15
WPAN Task Group 4, which has brought forth the IEEE
802.15.4 specifications. Newest amendments will include
TDMA and channel hopping to improve robustness.

1 http://www.ws4d.org (2010)
2 http://www.oasis-open.org/committees/ws-dd/ (2010)

Based on 802.15.4 on link layer, the ZigBee alliance has
developed further network and application layer protocols.
This combines power saving capabilities of 802.15.4 with
required network and application protocols, while energy
saving power states of radio is transparent to upper layers and
are under control of link layer. Furthermore, the ZigBee
alliance has developed the ZigBee application profiles, which
are composed of optional and mandatory ZigBee cluster
libraries.

B. Bluetooth Low Energy
In addition to the existing Bluetooth specifications, the

emerging Bluetooth Low Energy (BTLE) technology was
developed. Low energy link layer are defined, working under
the existing L2CAP (logical link control and adaptation
protocol) layer. This allows dual mode architectures,
consisting of parallel running classic Bluetooth and BTLE
stacks in one circuit.

BTLE revised drawbacks of classic Bluetooth like piconet
architecture and thus limited subnet size. Additionally, a
broadcast mode is described, which leads to new application
scenarios because of the absence of required direct pairing. In
contrast to classic Bluetooth application protocols and
profiles, BTLE is capable of lightweight attribute protocol
and attribute profiles. Payload for attributes is limited to
maximum of 27 octets and represents sensor and actor states
of, e.g., sensed temperature, time, heart rate, etc. For
attributes and for configuration and management purposes,
five methods are announced to be supported by BTLE
attribute clients and attribute servers: PUSH, PULL, SET,
BROADCAST, and GET. While the PULL method is used by
clients to retrieve attributes from a server, PUSH is used by a
server to avoid bandwidth and power consuming polling. The
attributes to be pushed are configured by the SET method,
designed for these operations. Furthermore, the SET method
can be used to change attribute states on the server, or more
general of actors. The BROADCAST method is used by
servers to send data to every listening device without need of
further pairing or configuration like for the PUSH method.
The GET method provides functionalities for finding all or
specific attributes of a device and thus provides basic
discovery features.

For different application scenarios, specific attribute
profiles are already specified for BTLE. Therefore, attributes
also include metadata information like human readable
descriptions of the attributes.

C. IP for smart cooperating objects
Both ZigBee and Bluetooth Low Energy are chosen by

Continua Health Alliance3 to provide wireless connectivity.
Nevertheless, neither ZigBee nor Bluetooth Low Energy is
able to communicate directly with higher valued services in
other IP based networks without intermediate devices. They
require application layer gateways to map payload data in IP
based network protocols. Changes in payload require high

3 http://www.continuaalliance.org (2010)

efforts for maintenance of protocol converters. This limits
application scenarios significantly. Other existing and
emerging technologies and architectures are developed and
extended to be applied in networking device infrastructures
and on future smart cooperating objects.

Based on uIP [3], proving feasibility of TCP/IP
implementation for 8-bit microcontrollers, and in accordance
to the IPv6 specification, the Internet Engineering Task Force
(IETF) has established the 6LoWPAN working group [1].
The focus of 6LoWPAN is to compress IPv6 headers to be
sent on top of 802.15-based technologies, especially 802.15.4
[2]. 6LoWPAN establishes the basis for TCP and UDP data
transmissions for smart cooperating objects. The main
advantage of 6LoWPAN is the compliance to a regular
computer network protocol (in this case IPv6). On top of
6LoWPAN protocols, further application layer protocols,
architectures, and concepts can be applied. This extends
applicability of existing technologies for a new class of
devices.

Based on the 6LoWPAN specifications, in [24] an
approach of ZigBee application profiles on top of UDP
instead of the ZigBee transport and networking layers is
described. While this approach has a considerable advantage
concerning interoperability on lower layers, for seamless
connectivity with higher valued services still gateway or
proxy concepts are required to map the ZigBee application
profiles in existing technologies and protocols.

III. DPWS

Service-oriented Architectures are often used to improve
flexibility and reusability of components in complex
distributed applications. This is achieved by modeling
functional blocks as independent services. DPWS can be used
to realize a SOA that fits into device centric applications and
thus enables the application of SOA in the area of networked
devices. The Devices Profile for Web Services (DPWS) was
developed to enable secure Web service (WS) capabilities on
resource-constraint devices. DPWS is a base technology for
device communication that can be easily composed with and
extended by other specifications and technologies. DPWS has
an architectural concept that is similar but different to the
Web Service Architecture (WSA) to fit better into device
scenarios. The main difference is the multicast service
discovery with WS-Discovery that does not require any
central service registry such as UDDI. But the service usage
of services on devices is similar to the service usage in WSA,
whereby DPWS devices can be directly integrated into WSA
based enterprise systems.

A. Common Misunderstandings of DPWS
DPWS specifications have a high learning curve and

readers often come to different conclusions than the authors
of the specifications. This leads often to a wrong depiction of
DPWS.

Extensibility. One major problem of the specification is
the extensible nature that leads to a specification where it is

hard to figure out the required baseline functionality. So there
are often misunderstandings in what is mandatory and what
not. Web services are mostly defining only mechanisms. How
to use these mechanisms in a deployment is up to the
application designer. Hence DPWS is a base technology and
provides only basic features. These features can be extended
by application specific protocols on a higher level, tailored
for each application scenario. In this application specific
extension protocols, the protocol designer decides which and
how the features of DPWS fit into requirements of the
scenario. These decisions are essential for properties such as
performance, reliability, scalability, and extendibility of the
resulting application. So DPWS leaves some space for these
designers to best fit DPWS in a specific scenario. This basic
principle is not clearly stated in the specifications and leads to
misunderstandings.

Discovery. The dynamic discovery feature of DPWS is
based on WS-Discovery and SOAP-over-UDP specifications.
These parts of the specification contain the most obvious
shortcomings of DPWS. The worst case scenario of the
device and service discovery has a lot of message round trips
and thus a huge latency. The following mechanisms here
presented in a chronological order as they would take place in
the worst case scenario belong to the discovery feature:

• Probe (explicit search for devices) / Hello (implicit
device announcement)

• Resolve (resolve network independent device
address)

• DNS query (resolve network independent device
name)

• RealtionsShip Metadata Exchange (retrieve the meta
data about available services)

• WSDL Metadata Exchange (retrieve the service
description meta data)

But the discovery depends heavily on the application
scenario and how the application level protocol designers
apply the available mechanisms. As most of these
mechanisms are based on two way message exchange, this
worst case scenario can take several seconds. But this worst
case is not required in all scenarios. The protocol designer
should consider that a client can access device metadata by
other means and still conforms to DPWS. A client can use
data about the device that is available in advance (at
development time) or can use mechanisms like caching of
metadata. Depending on the scenario, these message
exchanges can and should be kept at a minimum amount.

Binding. DPWS requires an SOAP 1.2 over HTTP binding
at least, though messages must be transported by HTTP
POST as described in the binding and the DPWS
specifications. But this implies not that a service cannot offer
more bindings and be used with other transport mechanisms.
A “Web Service Description Language”-Document (WSDL)
can contain several bindings. For one possible candidate, the
SOAP-over-UDP binding, the binding specification is still
missing. This might be fixed in the next version of
SOAP-over-UDP.

Eventing. DPWS offers a mechanism to subscribe for state
changes in a device. These state changes are delivered as
events to a client. DPWS defines the concepts of delivery
mode and eventing filter. The first one defines how an event
is delivered to a client and the latter one defines which events
are delivered to the client. It is up to the protocol designer to
define new event filters or delivery types. The PUSH delivery
mode defined in DPWS uses for event delivery separated
TCP connections to each subscriber. This requires high
resources in scenarios with many subscribers for one or many
events, but may be sufficient for simple scenarios. But
advanced delivery modes can be defined that make for
example use of the HTTP keep alive feature or avoid TCP
connections at all and use a UDP and IP multicast based
transport protocol.

Encoding. Like Web services in general, DPWS uses XML
in its human readable UTF-8 encoding. There are advantages
like platform independence to use XML. But these
advantages imply much overhead. The common
misunderstanding concerning encoding is the obligation to
encode everything in UTF-8 XML. If there is no need for the
flexibility given by XML, binary encodings for data can be
used. DPWS offers several mechanisms to use binary data.
On the one hand, there is the attachment mechanism that
enables the attachment of arbitrary data. This attachments use
the SOAP Message Transmission Optimization Mechanism
(MTOM) that leaves further space for optimizations. On the
other hand, it is possible to use an alternative encoding of the
XML data. SOAP is based on the XML Infoset specification,
which defines an abstract data set that can be used to
represent the information in well-formed XML documents.
This specification enables the encoding of information of an
XML document in other representations than UTF-8. It is
used by the Efficient XML Interchange Working Group to
define a standard named Efficient XML Interchange (EXI) to
encode XML in a very compact binary format. This
technology can be combined with DPWS as well [22]. At the
time of writing this paper, EXI is in the stage of a
specification candidate recommendation at the W3C and
there are not many implementations, especially for embedded
systems. But this technology will open new research areas
and may also minimize the overhead of XML data.

Composability. In general DPWS defines a minimal set of
features for baseline interoperability to enable secure Web
service messaging on devices. It does not cover all
application scenarios. But DPWS is part of the Web service
framework and is designed in an extendable way to be
combined with existing WS specifications, even if there is
still research needed in how to combine certain WS
specifications with DPWS. For deployment this is a question
of tool support. Besides extending DPWS it is also possible to
further restrict the specification as long it is interoperable
with DPWS [23].

Web services are always Service-oriented. W3C Web
services are often mentioned in the same breath with SOAs.
But SOAs do not depend on these SOAP Web services and

<?xml version="1.0" encoding="utf-8"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xmlns:uws="http://example.de/ping"
 xsi:schemaLocation=
 "http://wadl.dev.java.net/2009/02 wadl.xsd"
 xmlns:tns="urn:example"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://wadl.dev.java.net/2009/02">
 <resources base="http://uservices.de/">
 <resource path="ping">
 <method name="GET" id="ping">
 <request>
 <param name="request"
 type="xsd:string" style="query"
 required="true" />
 </request>
 <response>
 <representation
 mediaType="application/xml"
 element="uws:PingRespondse" />
 </response>
 </method>
 </resource>
 </resources>
</application>

Figure 1. WADL ping example message

can also be implemented by using other specifications and
standards. Furthermore W3C SOAP Web services are not
restricted to model a service-oriented application style. The
Web Services Resource Access Working Group (WSRA)4 at
the W3C is heading towards specifications for resource
oriented Web services, represented in XML and manipulated
by SOAP based mechanisms. DPWS for example uses the
WS-Transfer Get mechanisms for metadata exchange of the
device. Hence the metadata is modeled as a resource and
requested with a lightweight well defined method. A
complete application design using DPWS might be modeled
in a simple CRUD (Create, Read, Update, Delete) style also
but is not restricted to.

B. Discussion
After this survey of common misunderstandings of DPWS

that lead to wrong assumptions concerning the performance
and application of DPWS, a short discussion is about the
disadvantages and advantages of DPWS is necessary.

The most obvious disadvantage of DPWS is the overhead
because of data representation in XML format and especially
the usage of XML namespaces. This compromise is based on
the principle “flexibility over optimization” that is common in
SOAs and is of course arguable in device centric applications.
Additionally, there is the quite high learning curve to
understand DPWS and its capabilities. The style WS
specifications are written does not enhance the learning
curve, because they reference a lot of other WS specifications
and are not very verbose. Furthermore, there are yet missing
white papers and additional information beside the
specifications. This situation will hopefully get better when
there are more white papers by the OASIS WS-DD technical
committee and DPWS toolkits are more matured and include
sufficient documentation.

The major advantages of DPWS are flexibility, abstraction
through loose coupling, standards approved by well known
organizations and available tool support. The flexibility is
provided by the use of XML and all the WS specifications
that are optimized for flexibility. This results in a DPWS
specification that is extendable in many variations to meet
requirements of most imaginable application scenarios. The
loose coupling is a feature that is important to applications
that integrate devices. It decouples applications from the
devices itself and makes them only dependent on the abstract
service interfaces. This extends the product life of such
applications as integrated devices can be exchanged without
adaptations of the application.

The DPWS specification is approved as OASIS standard in
Version 1.1. since July 2009 and aligned to the other WS
standards at OASIS and W3C. During the standardization
process, the interoperability of several DPWS
implementations was tested. Thus, several proven open
source implementations from the WS4D-Initiative, from
SOA4D and implementations from Microsoft part of

4 http://www.w3.org/2008/11/ws-ra-charter.html (2010)

Windows Vista, Windows 7 and the .NET Micro Framework
are available.

IV. REST

With DPWS, SOAs based on Web services can be
developed and deployed. However, it still has a big overhead
due to many expensive bidirectional message exchanges and
data representation in XML. Another approach are Resource-
oriented Architectures (ROA). One proper approach for a
ROA is the Representational State Transfer (REST), a
software architectural style based on the work of Roy
Fielding [15]. REST is using similar architectures than the
World Wide Web (WWW). Each data is handled as a
resource and each resource is an atomic data unit. Only a
strong limited number of methods for the manipulation of a
resource are specified, and each method works in a fixed
functionality. In contrast to DPWS, the methods of REST are
restricted to a principle similar to the CRUD (Create, Read,
Update, Delete) style. The two most common methods are
GET for the request of a resource and POST for the
manipulation of a resource or requests to data processing
resources requiring input data. Furthermore, REST must be
based on a stateless protocol. Each resource can be handled
and manipulated over different states and these states must be
handled by the service client and not by the server. REST
methods GET, PUT, and DELETE should also be
implemented idempotent, so that the same method applied on
the same resource one or many times have the same result.
Therefore, the implementation of a RESTful service can be
more simple and lightweight than in other architectures.

A. Service Description Language
Service description languages are always required to ensure

interoperable interfaces and to provide possibility of tools
support for interface development and implementation. REST
services can be developed as easy machine readable service
interaction with the Web Application Description Language

(WADL) [16]. WADL is the upcoming interface description
language for RESTful architectures. The resource based
handling of methods allows a simple and easy scalable
service description.

WADL is based on XML and describes applications based
on HTTP. It supports the automatic description of RESTful
Web services with machine process-able service descriptions.
WADL is supported by the java.net community and is
currently a submission to the W3C. It can be assumed that
WADL will be a W3C standard soon. Figure 1 depicts a
possible service that checks the availability of a server. As
common for RESTful architectures, all objects are handled as
resources. In the first step, a resource is created with the base
to the uService infrastructure. The location of a special
resource ping is declared and the available method, with
request and responds parameters, is shown.

B. Semantic Web Services
By deploying RESTful architectures, adding of semantics

to service and resource descriptions are a main challenge.
Here SA-REST as an open, flexible, and standards-based
approach for adding semantics to RESTful services can be
used. With SA-REST, most advancements of SAWSDL [16]
for semantics in service oriented architectures are used. For
example a service element can be linked to an ontological
model by the preparation of syntactic descriptions to semantic
metamodels using annotations. Usually, REST services can
be described in a HTML page, but unlike a WSDL
description this can be really human readable pages.
Therefore, any website can be used as service and also any
HTTP client can be used to access a REST service.
Furthermore, so-called microformats can be used in these
descriptions to allow an easy machine to machine interaction
with semantic services.

C. Missing REST functionality
To apply RESTful architectures also for device

communication, further research is required. This subsection
discusses most important ones.

Asynchronous messaging. REST is often based on HTTP,
which uses synchronous request-response transmissions. The
client initiates a connection by opening a socket to the server
and holds this socket open until the responds from the server
is complete. In device architectures, the data processing and
response generation may not happen immediately. This would
require long lived connections. Especially in dynamic and
mobile device scenarios, asynchronous short duration
transmissions are required to solve this problem. DPWS
makes use of WS-Addressing to overcome this problem.
WS-Addressing includes message IDs in every request to
assign responses to the correlated request.

Addressing. For devices in mobile and dynamic scenarios,
changing transport addresses (IP) might occur. Usage of
WS-Addressing in DPWS assigns unique identification for
every device, independent of the transport specific address.
RESTful implementations might push this issue to DNS to
abstract a human readable URI from IP based transport

address. But this requires high efforts for DNS server
synchronization or usage of Multicast-DNS (mDNS) to avoid
centralized design.

Eventing. Without extension, REST cannot provide
eventing functionalities. Here an extension e.g. to the
standard HTTP protocol is necessary that allows push
message exchange towards the client. REST relies on classic
server/client communication, whereby servers are passive and
inactive until a client request occurs. Push messaging would
require change of these roles and active listening of the origin
client. If the client uses NAT or other specific network
architectures, further efforts like port forwarding or usage of
an intermediate proxy are required. Some interesting ideas
can be found but are no standard defined yet. Webhooks [17]
are one solution and are used for example by Google Code
[18] or PayPal [19]. This approach is using HTTP POST as
an indirect message to the client to inform about an event.
Furthermore, a current W3C working draft [20] defines a
server push or client pull mechanism. But for a
comprehensive eventing concept, additional efforts are
required to include lease concepts, data distribution design,
and filtering mechanisms. DPWS includes WS-Eventing and
allows for own extensions to solve these problems.

Service modeling. REST models data and states of devices
as resources. SOAs instead are using interacting services to
model functional blocks. Thus, for simple data access, DPWS
deployments provide services and methods similar to GET
methods of HTTP to request data (e.g. via WS-Transfer).
Hence by restriction concerning the supported methods of a
DPWS device, CRUD like messaging pattern is possible also.
Because REST is based on HTTP with well defined methods,
this is not required. But the limitations of methods/verbs in
RESTful designs make modeling of interactive services
difficult. Simple functionalities like commands for an actor
(e.g. opening a door) must be modeled as changes on a
resource and require rethinking of application designers.

D. Common Misunderstandings of REST
Web services and Web services. The W3C defines Web

services as “programmatic interfaces”. The W3C has brought
a complete protocol framework, often referred to as WS-*
protocols or in general as SOAP Web services. RESTful web
services are proposed as to be more lightweight than W3C
WS-* specifications. However, for a clear separation,
protocol and application designers should be aware of the
difference (i.e. architecture and used protocols).

REST and RPC. The simple usage of ROA frameworks
does not save for the creation of RPC-Style interfaces. During
the creation of interfaces, developers must follow the rules of
ROA. Other well-known applications use some of these
advantages and are quite successful. One important is SQL
with 4 major methods (SELECT, INSERT, UPDATE, and
DELETE) and all objects handled as resources.

REST is/uses HTTP. ROA is an architecture, while REST
is an architectural style going back to work of Roy Fielding.
REST as concept is completely protocol agnostic. Indeed,

Roy Fielding (principle author of the HTTP specification)
proposes HTTP to build RESTful designs. But ROA and
REST must not use HTTP. HTTP is capable of establishing a
resource-oriented architecture. The success of HTTP in ROAs
can be ascribed to its common use in many communication
frameworks and low learning curve. DPWS for example also
realizes device metadata exchange in a RESTful style.

REST is a standard. REST is not a standard yet, but most
technologies for communication and data representation that
can be used to create a RESTful architecture are standardized.
The first steps to create a complete REST-* framework are
done by Red Hat, which has founded the REST-* Community
[21]. The goal is to create combined REST-* standards like
the WS-* approach for SOA based Web services.

V. DPWS AND REST

In section III the pitfall that SOAP based Web services are
always modeled in a service-oriented design style is discussed
and rejected. The term service must be used carefully in this
context as a service in general describes a collection of
functionalities. But the term service is used sometimes
different in SOAP Web services and RESTful services in
contrast are based on resource. Thus RESTful Web services
can describe services based on different protocols but are
based on the same architectural style. DPWS can be deployed
also in a RESTful application design, whereby SOAP Web
services are used to access and manipulate the resources.
Additionally a DPWS device can host services which can be
accessed by miscellaneous different interfaces.

Often RESTful design is wrongly mixed up with HTTP as
discussed above. Because DPWS and RESTful HTTP
deployments base on partly the same specifications, a
mapping might be possible as discussed in the remainder of
this section.

Protocol design. For a comprehensive generic mapping the
protocol designs must be analyzed more in detail. RESTful
deployments may use HTTP as application layer protocol.
The resource representation, addressing and the method to be
applied on the resource are encoded in the HTTP header. The
further required data for processing input or output are
encoded in the HTTP body while the format is not restricted.
SOAP based Web services and thus also DPWS are using the
HTTP binding as transport mechanism. Hence SOAP based
Web services additionally include information for the target
service or the client in the SOAP header. Because of this the
HTTP header must not be used as extensive as in REST.

Addressing. DPWS uses WS-Addressing that allows
identification of devices independent of transport specific
addresses (IP), carried in the SOAP header. The transport
addresses are used by DPWS to identify the endpoint to send
the service invocations to. In REST the address is used to
identify the resource to be manipulated. For a mapping each
service in DPWS must be restricted to support only a
restricted set of methods and a service must be split up in
different endpoints, each with a unique address. Based on the

addressing discussion, further research is required how to
map the hosting/hosted service concept of DPWS in RESTful
resources. Services of a DPWS device are mostly
independent and often without a common basis, whereby
resources in REST are often related to each other.

Payload. A core principle of REST is the payload agnostic
design. In a HTTP based RESTful design, the HTTP body is
neither restricted to an encoding nor to specific syntax
formats. Widely used are XML and JSON based
representation formats. But SOAP Web services are based on
XML Infoset to provide lowest possible interoperability
concerning data representation. For a generic mapping the
RESTful deployment must be aware of the XML Infoset
syntax. If not the payload must be attached or included by
DPWS messages e.g. by using attachment mechanisms like
MTOM.

Summarized, a generic DPWS/REST mapping is not
necessary, because DPWS can be used to model a RESTful
application. A generic mapping of HTTP based RESTful
design and DPWS is possible by considerable restrictions of
the DPWS protocol design concept.

VI. BLUETOOTH LOW ENERGY / RESTFUL HTTP MAPPING

For complex application scenarios, domain specific and
dedicated technologies are required to widen scenarios. Thus,
this section proposes a seamless HTTP/BTLE mapping.

As described in section II, BTLE features usage of a
lightweight attribute protocol (ATT) and attribute profiles.
ATT supports several methods to request and set attributes
(states) of attribute servers. Because REST also uses states for
modeling information about devices and services (i.e.
resources), there are similarities between both. Furthermore,
the methods used by the ATT are similar to the methods
defined by HTTP also. A direct mapping without need of
further caching and protocol transformations between BTLE
and IP based solutions allow seamless integration of BTLE
technology in networking infrastructures. Especially in
ad-hoc networks without management devices, the mapping
will lead to new application scenarios.

Attributes are identified by attribute handles, which
specifies how to address the attribute. There are no
information available how handles are represented and
encoded, but a mapping into URIs for resource identification
like used in HTTP based RESTful design may be possible.
Therefore, the gateway for connecting IP based networks and
the BTLE devices have a URI to allow REST based data
access. The attribute handles and further BTLE device
metadata are used to generate generic URIs for external
access (cf. figure 2). The type of the attribute value, the
semantic meaning, is defined by a 16 bit UUID and is defined
in the profiles. The value of the attribute can be represented
by using specific data types like integer, float, string, etc. This
information can be embedded in the HTTP message body
using standard data representation formats like JSON and
XML.

Table 1. HTTP / BTLE ATT method mapping

HTTP 1.1 methods BTLE ATT methods

OPTIONS - request
communication options, i.e. which
methods are supported on this
resource

GET – services/attributes of device
and/or attribute types and handles

GET - request resource
representation

PULL

HEAD - same like GET, but server
returns no message body

-

POST - send data to data-handling
process and/or annotate existing
resource

SET

PUT - change resource state SET – write operations on
attributes require specific procedure
to get write permissions

DELETE - delete resource SET
TRACE - HTTP “ping” -
CONNECT - establish connection
via proxy

link layer operation

- PUSH
- BROADCAST

Figure 2. BTLE / REST device architecture

Table 1 proposes a new approach for mapping of methods
defined by the HTPP 1.1 specification and BTLE ATT
methods. The usage of the simple set of verbs in BTLE ATT
is very similar to the usage of the few verbs used in REST, in
contrast to many semantically not clear defined verbs in Web
services technologies. The ATT GET method is used for
basic discovery functionalities. The discovery process bears
analogies to DPWS discovery with separation of device and
service discovery. In the first step, devices and their provided
services are discovered. In the next step, the specific
attributes of a service are requested. After devices, services
and attribute handles are known, the attributes can be
requested by using the ATT PULL method. The response is
the attribute value representing the state, which is a resource
in REST. Operations on the attributes (i.e. changes of
resources and delete of resource) can be mapped in ATT SET
operations. If deleting or changing of a specific attributes is
possible depends on permissions and security configurations
of the attribute. In REST this may also be restricted and
allowed methods, which can be requested by using HTTP
OPTIONS. For the ATT PUSH method of an attribute server,
no direct counterpart exists in HTTP. For PUSH indications,
REST server and client roles are swapped, which requires
active listening of the origin client. But new concepts are
emerging for RESTful architectures like Webhooks and W3C
EventSource. DPWS includes WS-Eventing to provide these
server initiated message exchange functionalities. ATT PUSH
indications also include mechanisms for reliability
(acknowledgments) and flow control of indications to avoid
flooding. In HTTP, acknowledgements are also used as HTTP
response headers and additionally on network (TCP) layer. In
DPWS this functionality is provided by 2-way message
exchange pattern, which prescribes response of the service
provider in contrast to 1-way message exchange pattern. Flow
control in REST and DPWS are task of the network layer

also. The ATT BROADCAST method has no direct mapping
into the HTTP protocol and REST style. HTTP is strictly
based on server/client connections. Thus, HTTP relies and
point-to-point communication and due to reliability issues on
TCP. Thus, DPWS specifies for discovery purposes an own
SOAP-over-UDP binding without the need for HTTP. This
allows usage of IP multicast instead of unicast messaging.
Hence, REST is not capable of such functionalities.

Unfortunately, only few data is available about ATT and no
comprehensive definition of a direct mapping between ATT
and REST can be defined in this paper.

VII. CONCLUSION

For future IP based wireless communication of smart
cooperating objects, RESTful resource-oriented architectures
based on HTTP and SOAs implemented by DPWS are proper
candidates. Both provide basic functionalities to meet
requirements not only of single application scenarios but to
be applied as platform independent cross domain
technologies. Nevertheless, the high degree of extensibility
and flexibility coupled with missing documentation and
partly high learning curve leads to pitfalls for both of them.
These pitfalls include eventing, discovery, and encoding
concepts as well as extensible and composable nature and are
presented in detail in this paper. The underlying architectures
are most remarkable difference between both, but while based
on partly same protocols and technologies, discrepancies are
pre-programmed. For example DPWS must not be used to
model a SOA, but can also be used to realize a RESTful
application. Hence SOAs and RESTful style are not a
contradiction. The restrictions concerning methods and about
stateless design of the server in RESTful deployments may
lead to more lightweight implementations, independent of the
used protocols. But prove of this thesis is still outstanding,
especially because of e.g. missing eventing and discovery
concepts and mechanisms of used protocols for RESTful
applications. Especially eventing and discovery may require
sufficient more resources and implementation efforts for the
servers also in RESTful deployments.

Often the diversity of atomic operations/methods/verbs in a
SOAP Web services based application is described as
drawback. But the diversity of the methods or more in general
of services and actions must be mapped to resource
representations in a ROA to provide similar functionalities on
the one hand and still offer flexibility and extensibility on the
other hand. Hence RESTful applications often use complex
URI addressing schemes to overcome this issue.

Not to exclude non IP based technologies of future
scenarios, the emerging Bluetooth Low Energy Attribute
Protocol can be mapped into HTTP protocol by using such a
generic URI mapping, as presented in this paper also.

ACKNOWLEDGMENT

This work has been achieved in the European ITEA2
projects uSERVICE and OSAmI and has been funded by the
German Federal Ministry of Education and Research under
contract numbers 01|S0902F and 01|S08003I.

REFERENCES
[1] IETF, IPv6 over Low power WPAN (6lowpan), Technical report,

http://tools.ietf.org/wg/6lowpan/, 2008.
[2] IETF Network Working Group, Transmission of IPv6 Packets over

IEEE 802.15.4 Networks, RFC 4944, http://tools.ietf.org/html/rfc4944,
2008.

[3] Adam Dunkels, “Full TCP/IP for 8-Bit Architectures,” International
Conference On Mobile Systems, Applications And Services (MobiSys
2003), San Francisco, California, pp. 85-98, 2003.

[4] Hui, J. W. and Culler, D. E., “IP is dead, long live IP for wireless
sensor networks,” 6th ACM Conference on Embedded Network Sensor
Systems (SenSys 08), New York, NY, pp. 15-28, 2008.

[5] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson,
and David Culler, “An Analysis of a Large Scale Habitat Monitoring
Application,” 2nd international Conference on Embedded Networked
Sensor (SenSys 2004), New York, NY, pp. 214-226, 2004.

[6] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet
Chhabra, Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman,
and Mark Yarvis, “Design and Deployment of Industrial Sensor
Networks: Experiences from a Semiconductor Plant and the North
Sea,” 3rd international Conference on Embedded Networked Sensor
Systems (SenSys 2005), New York, NY, pp. 64-75, 2005.

[7] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak
Ganesan, Alan Broad, Ramesh Govindan, and Deborah Estrin, “A
Wireless Sensor Network For Structural Monitoring,” 2nd international
Conference on Embedded Networked Sensor Systems (SenSys 2004),
New York, NY, pp. 13-24, 2004.

[8] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory
Fenves, Steven Glaser, and Martin Turon, “Health Monitoring of Civil
Infrastructures Using Wireless Sensor Networks,” 6th international
Conference on information Processing in Sensor Networks (IPSN
2007), New York, NY, pp. 254-263, 2007.

[9] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh, “Fidelity and Yield in a Volcano Monitoring Sensor
Network,” 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7 Operating Systems Design and
Implementation. Berkeley, CA, pp. 27-27, 2006.

[10] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service
Infrastructure for Realtime Embedded Networked Devices: A service
oriented framework for different domains,” International Conference
on Systems and International Conference on Mobile Communications
and Learning Technologies (ICNICONSMCL'06), Washington, DC,
USA, page 43, 2006.

[11] Stamatis Karnouskos, Oliver Baecker, Luciana Moreira Sá de Souza,
Patrik Spieß, “Integration of SOA-ready networked embedded devices
in enterprise systems via a cross-layered web service infrastructure,”
IEEE 12th International Conference on Emerging Technologies and
Factory Automation (ETFA2007), Patras, Greece, pp. 293-300, 2007.

[12] Zeeb, E., Prüter, S., Golatowski, F., and Berger, F., “A context aware
service-oriented maintenance system for the B2B sector,” 3rd
International IEEE Workshop on Service Oriented Architectures in
Converging Networked Environments (SOCNE 2008), Ginowan,
Okinawa, Japan, pp. 1381-1386, 2008.

[13] Zeeb, E.; Behnke, R.; Hess, C.; Timmermann, D.; Golatowski, F.;
Thurow, K., "Generic sensor network gateway architecture for plug and
play data management in smart laboratory environments," IEEE 14th
International Conference on Emerging Technologies and Factory
Automation (ETFA 2009), pp.1-8, La Palma, Spain, 2009.

[14] Lipprandt, M.; Eichelberg, M.; Thronicke, W.; Kruger, J.; Druke, I.;
Willemsen, D.; Busch, C.; Fiehe, C.; Zeeb, E.; Hein, A., "OSAMI-D:

An open service platform for healthcare monitoring applications," 2nd
Conference on Human System Interactions (HSI 2009), pp. 139-145,
Catania, Italy, 2009.

[15] Fielding, Roy T., “Architectural Styles and the Design of Network-
based Software Architectures,” University of California, Irvine,
Department of Informatics, DISSERTATION, 2000.

[16] Web Application Description Language, java.net project,
https://wadl.dev.java.net/, 31.08.2009,

[17] Webhooks, last accessed 23.01.2010,webhooks.org/
[18] PostCommitWebHooks, Google Community, last accessed 23.01.2010,

http://code.google.com/p/support/wiki/PostCommitWebHooks
[19] Instant Payment Notification, PayPal, last accessed 23.01.2010,

https://www.paypal.com/ipn
[20] HTML5, W3C, last accessed 23.10.2010,

http://dev.w3.org/html5/spec/spec.html
[21] REST-*, Red Hat and REST-* Community, last accessed 23.10.2010,

http://jboss.org/reststar/
[22] Guido Moritz, Dirk Timmermann, Regina Stoll, Frank Golatowski,

“Encoding and Compression for Devices Profile for Web Services,” 5th
International Workshop on Service Oriented Architectures in
Converging Networked Environments (SOCNE2010), Perth, Australia,
2010.

[23] Guido Moritz, Elmar Zeeb, Steffen Prüter, Frank Golatowski, Dirk
Timmermann, Regina Stoll, “Devices Profile for Web Services in
Wireless Sensor Networks: Adaptations and Enhancements,” 14th
International IEEE Conference on Emerging Technologies and Factory
Automation (ETFA2009), La Palma, Mallorca, 2009.

[24] IETF Network Working Group, A UDP/IP Adaptation of the ZigBee
Application Protocol, Internet-Draft, http://tools.ietf.org/html/draft-
tolle-cap-00, 2008.

