
Improvements on Scalable Distributed Least Squares Localization
for Large Wireless Sensor Networks

Ralf Behnke, Jakob Salzmann, Dirk Timmermann
Institute of Applied Microelectronics and Computer Engineering

University of Rostock
18057 Rostock, Germany

{ralf.behnke, jakob.salzmann, dirk.timmermann}@uni-rostock.de

Abstract—Wireless Sensor Networks (WSNs) have been of
high interest during the past couple of years. One of the most
important aspects of WSN research is location estimation. A
good solution of fine grained localization is the Distributed
Least Squares (DLS) algorithm, which splits the costly lo-
calization process in a complex precalculation and a simple
postcalculation. The latter is performed on constrained sensor
nodes, finalizing the localization by adding locale knowledge.
This approach lacks for large WSNs, because cost of commu-
nication and computation theoretically increases with network
size. In practice the approach is even unusable for large WSNs.
An important assumption of DLS is that each blind node is
able to communicate with each beacon node to receive the
precalculation and to determine distances to beacon nodes. This
restriction have been overcome by scalable DLS (sDLS), which
enabled to use the idea of DLS in large WSN for the first time.
Although, sDLS has lower cost of computation than DLS, for
large networks, this cost, caused by matrix updates, is pretty
high. In this work an adaptation of sDLS is presented, which
dramatically reduces cost of computation by circumventing
matrix updates as often as possible.

Keywords-wireless sensor networks; localization; scalability;
optimization

I. INTRODUCTION

Recent technological advances have led to the devel-
opment of tiny wireless devices, which are able to sense
their environment, compute simple tasks and exchange data
among each other. Interconnected assemblies of such de-
vices, called Wireless Sensor Networks (WSNs), are com-
monly used to observe large inaccessible areas. In many
applications of WSNs, knowledge of nodes’ locations is
mandatory for a meaningful interpretation of sensed data.
Location-awareness is not only necessary to assign a lo-
cation to measured values but also to perform geographic
routing [1] or location based clustering [2]. Due to existing
limitations in terms of size and energy consumption, local
positioning within the network is preferred over utilizing
common positioning systems like GPS. Therefore, the pres-
ence of location-aware sensor nodes is typically assumed
which are referred to as beacon nodes. These nodes know
their own position a priori or via common positioning
systems. The remaining nodes, which we refer to as blind
nodes, are assumed to use communication and any kind of

distance estimation or neighborhood information to estimate
their position with the help of beacon nodes.

Existing localization techniques can be divided into
coarse-grained and fine-grained localization. Commonly this
classification reflects the trade off between precision and re-
source consumption of the corresponding techniques. While
coarse-grained approaches like Adaptive Weighted Centroid
Localization (AWCL) [3] require less communications and
computations and provide lower precision estimates, fine-
grained approaches aspire to an exact localization, which is
achieved by use of costly computations. Distributed Least
Squares (DLS) [4] combined high precision with relatively
low complexity. It splits the costly localization calculation
into precalculation and postcalculation. Independent from a
specific blind node, the complex precalculation is performed
on a high-performance sink. The remaining postcalculation
is less complex and performed on resource-constrained blind
nodes.

As a major drawback of DLS, it presumes that each blind
node is able to receive precalculation data from the sink and
is able to estimate its distance towards each beacon node.
This makes DLS infeasible for use in large multi-hop net-
works which represents one of the most interesting scenarios
for WSNs. Furthermore, communication and computational
effort on each blind node increases with the number of
beacon nodes and, therefore, with the applied network size.

The described drawbacks have been overcome by scalable
DLS (sDLS) [5], still saving the idea of DLS. The use
of individual precalculations instead of only one precal-
culation for the whole network, as used by DLS, enabled
sDLS to be used in large WSNs. By the use of sDLS
the computational cost becomes independent from network
size, also communication effort scales better. Although sDLS
outperforms DLS in all aspects, given that the network is
large enough, costly updating of precalculations demands for
improvement. The actual work improves cost of computation
of sDLS by abstaining from updating precalculations as
much as possible.

The remainder of the paper is organized as follows.
Section II covers the original DLS algorithm as well as
the newer sDLS algorithm. In Section III, the improved ap-

2010 5th International Symposium on Wireless Pervasive Computing (ISWPC)

978-1-4244-6857-7/10/$26.00 ©2010 IEEE 273

proach of sDLS, referred to as sDLS - no update (sDLSnu), is
described. Section IV describes the simulation environment
which was used to evaluate the algorithm. Simulation results
are presented in Section V. Finally, Section VI summarizes
the presented work and covers future work.

II. RELATED WORK

The DLS algorithm as well as the sDLS approach can be
divided into two parts. Firstly the arithmetical part is to be
considered, followed by the algorithmic part.

A. Arithmetic Background
The system of equations which have to be solved for

localization of a blind node is originally build by distance
equations as given in equation (1). Here x and y is the
unknown position of a blind node. The known position of
a beacon node is denoted as xi and yi, while the distance
between both nodes is denoted as ri. The number of beacon
nodes, utilizable for localization is given as m.

(x−xi)2+(y−yi)2 = r2
i (i ∈ I; I = {1, 2, . . . , m}) (1)

To linearize this system of equations an arbitrary beacon
node is used as linearization tool [6], denoted with index
L and utilized as given in equation (2). This reduces the
number of equations by 1.

(x − xL + xL − xi)2 + (y − yL + yL − yi)2 = r2
i

(L ∈ {1, 2, . . . , m} , i ∈ {1, 2, . . . , m} � L)
(2)

Restructuring the equations leads to equation (3), where
rL denotes the distance between blind node and linearizer, ri

is the distance between blind node and beacon node and diL

denotes the distance between linearizer and beacon node.

(x − xL)(xi − xL)+

(y − yL)(yi − yL) =
1
2

[
r2
L − r2

i + d2
iL

]
= biL

(3)

The restructured system of equations can be written in
matrix form as

Ax = b (4)

with

A =

⎛
⎜⎜⎜⎝

xk1 − xL yk1 − yL

xk2 − xL yk2 − yL

...
...

xkn
− xL ykn

− yL

⎞
⎟⎟⎟⎠ ,

x =
(

x − xL

y − yL

)
,b =

⎛
⎜⎜⎜⎝

bk1L

bk2L

...
bknL

⎞
⎟⎟⎟⎠

(5)

In equation (5), matrix A only consists of beacon position
data, while b contains distances between beacon nodes and
blind nodes. Therefore calculations on A can be performed
at a powerful sink outside the WSN. The localization will
be finalized on each blind node by performing the remain-
ing part of the calculation. The beacon nodes, used for
localization, are denoted with indices K = {k1, k2, . . . , kn}
with K ⊆ {I � L}. DLS and sDLS differ in the choice of
K. DLS uses only one system of equations, containing all
beacon nodes, which is used for localize all blind nodes,
using the first beacon node for linearization. Therefore it
exists only one set K for the whole network, given as
K = {I � L} with L = 1. In a large WSN no blind node
will be able to access all beacon nodes directly for data
exchange or distance estimation. To overcome this problem,
sDLS uses individual sets of beacon nodes for localization,
one for each beacon node. Each set contains only the beacon
node itself and beacon nodes within its communication
range. Therefore sDLS uses m systems of equations with
Ki ⊆ {I � Li}, Li = i and i ∈ I .

Another difference between DLS and sDLS is how the
linear system of equations is to be solved. DLS uses normal
equations, which leads to a restructuring of equation (4) as
given in equation (6). In this case Ap =

(
AT A

)−1
AT and

dp = d2 present the precalculation, performed on the sink.

x =
(
AT A

)−1
AT 1

2
[
r2
L − r2 + d2

]
(6)

sDLS takes into account that there will be beacon nodes
included in a precalculation that are not in the commu-
nication range of a blind node and vice versa. Therefore
the precalculated data has to be updated on the blind
node. For that reason sDLS uses qr-decomposition to solve
the linear system of equations. This allows updating and
downdating of Q and R [7]. Doing so, with A = QR
and R upper triangular, the system of equations given in
equation (4) becomes restructured as given in equation (7).
The precalculation is presented by QT , R and dp = d2,
individually determined for each beacon node.

Rx = QT 1
2

[
r2
L − r2 + d2

]
(7)

B. The Algorithms

The DLS algorithm consists of four steps as stated below.
Direct communication between blind nodes and all beacon
nodes is required for distance estimation.

Step 1 - Initialization Phase:
All beacons send their position to the sink.

Step 2 - Precalculation Phase:
Sink computes Ap and dp.

Step 3 - Communication Phase:
Sink sends precalculated data to all blind nodes.

Step 4 - Postcalculation Phase:
Blind nodes determine distance to every beacon node,

274

receive precalculated data and estimate their location
by solving the postcalculation.

Figure 1. Blind node selects precalculation of closest beacon node

The sDLS algorithm uses individual precalculations for
each beacon node, consisting of the beacon node itself,
used as linearization tool, and beacon nodes within its
communication range. This ensures that the linearizing node,
which can not be deleted without a complete recalculation,
is within the blind nodes’ communication range. A blind
node is expected to use the precalculation of the closest
beacon node. As illustrated in figure 1 the number of beacon
nodes that have to be added by the blind node as well
as those that have to be deleted from precalculation is
relatively small. To enable individual precalculations, each
beacon node discovers beacon nodes in its communication
range and provides this information to the sink. Containing
two additional steps, the sDLS algorithm can be stated as
follows:

Step 1 - Discovery Phase:
Each beacon node sends a local broadcast to discover
neighboring beacon nodes.

Step 2 - Initialization Phase:
Each beacon node sends its position and a list of its
neighbors to the sink.

Step 3 - Precalculation Phase:
Sink computes QT , R and dp individually for each
beacon node.

Step 4 - Distribution Phase:
Sink sends precalculated data to beacon nodes.

Step 5 - Communication Phase:
Beacon nodes send precalculated data to blind nodes.

Step 6 - Postcalculation Phase:
Blind nodes determine distances to accessible beacon
nodes, receive precalculated data, update precalcula-
tion and estimate their position, solving the postcalcu-
lation.

C. Computational Cost of sDLS

Above mentioned updates of individual precalculations,
take a high amount of computation, caused by matrix
updates of Q and R. Figure 2 shows the mean number of
operations, which have to be performed by each blind node
to estimate its position using sDLS. Besides overall cost,
including updates and final position estimation, cost of final
estimation of a blind nodes’ position is depicted separately.
It is shown, that updating the precalculation takes up to 95%

of the overall cost. Therefore the following approach aspires
to save this cost by abstaining from update operations.

1

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000

deployed sensor nodes

m
ea

n
nu

m
be

r o
f o

pe
ra

tio
ns

sDLS: additions sDLS: multiplications sDLS: powers
sDLS: additions (final) sDLS: multiplications (final) sDLS: powers (final)

Figure 2. Mean cost of computation of sDLS

III. REDUCING COST OF COMPUTATION

In contrast to DLS the postcalculation phase of sDLS,
performed on blind nodes, was extended by an update
process, inserting and deleting beacon nodes to and from
precalculations, respectively. Therefore cost of computation
consists of the following parts:

1) deletion of inaccessible beacon nodes
2) insertion of accessible beacon nodes
3) estimate of position, using postcalculation

As previously shown, solving the system of equations
takes up only a small part of the computation, while deletion
and insertion takes the most. In the following Subsections
it is described, how sDLSnu reduces the number of insert
operations and abstains from delete operations.

A. Saving Insert Operations

In most cases insert operations can be easily saved by
leaving out additional beacon nodes. Therefore the sDLSnu

approach abstains from complete the precalculation with ad-
ditional beacon nodes as much as possible. An impairment of
localization accuracy is expected due to the reduced number
of beacons. Since the system of equations can be only solved
if at least the linearizer node and two additional beacon
nodes are used for calculation, sDLSnu still uses matrix
updates to insert additional beacon nodes, if necessary to
meet this condition. This ensures that localization does not
fail in consequence of the sDLSnu approach.

B. Saving Delete Operations

As known from literature [7], deletion is even more
expensive than insertion. Therefore, saving delete operations
is most important. In contrast to insert operations, the system
of equations becomes unsolvable if distance information of
beacon nodes, included in precalculation, is absent. There
are two possibilities to solve the system of equations with

275

inaccessible beacon nodes. The first one is to update precal-
culations as done by sDLS. The second possibility, which is
used by sDLSnu, is to estimate missing distance information.

As shown in figure 1, blind node and inaccessible beacon
nodes are on opposite sites. As the blind node selected the
closest beacon node for precalculation, the distance between
blind node and linearizing node, estimated by the blind node,
tends to be small. Squared distances between linearizer and
inaccessible beacon nodes are already included in precal-
culated data, as given in equations (3) and (7). Therefore,
sDLSnu uses the sum of both distances, to estimate distances
towards inaccessible beacon nodes. Using this approach,
sDLSnu completely abstains from delete operations. The ad-
ditional cost for distance estimation is to solve equation (8).

ri = rL +
√

d2
iL (8)

IV. SIMULATIONS

To verify performance of sDLSnu and sDLS without
modification, the MatLab based network simulator Rmase
is used [8]. The simulator provides a realistic radio com-
munication model, including spatial and temporal normal
distributed fading, random transmission errors, collisions
and a CSMA-CA MAC layer. As previously done in [5],
a static bidirectional spanning-tree routing was used for
communication.

A random deployment of n2 nodes within a field of n∗n
arbitrary distance units (adus) was utilized. While the first
node was always used as sink, the remaining nodes have
been randomly chosen as blind nodes (50%) or beacon nodes
(50%). The field size parameter n was varied from 5 to
30. The average communication range, given by the radio
model was 3 adus. For each field size the average over 100
simulations has been determined. In each simulated network
sDLS as well as the modified sDLSnu algorithm have been
performed concurrently.

V. RESULTS

The new sDLSnu approach is compared to sDLS in terms
of localization accuracy and cost of computation on blind
nodes. Additionally the number of beacon nodes used by a
blind node as well as the update-rate is analyzed.

A. Update Performance

The aim of the sDLSnu approach was to reduce the number
of matrix updates as much as possible by abstaining from
insert operations as well as delete operations. Figure 3 shows
the mean number of beacon nodes used for localization
by blind nodes. While sDLS uses about 12 beacon nodes,
the number of beacon nodes, used by sDLSnu is slightly
higher. Regarding the number of insertions and deletions,
also depicted in figure 3, more beacon nodes become deleted
than inserted, using sDLS. The difference between both
operations is similar to the difference of used beacon nodes.

While the number of deletions used by sDLSnu is identical to
zero, the number of inserts only tends to zero and decreases
with network size.

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000
deployed sensor nodes

us
ed

 b
ea

co
n

no
de

s

0

2

4

6

8

10

12

14

pe
rfo

rm
ed

 u
pd

at
e

op
er

at
io

ns

sDLS: beacons used sDLS: insert operations sDLS: delete operations
sDLS(nu): beacons used sDLS(nu): insert operations sDLS(nu): delete operations

Figure 3. Mean number of update operations performed by a blind node

B. Cost of Computation

To quantify cost of computation, the number of operations
has been counted on each blind node. Due to the different
complexity, three kinds of operations have been analyzed.
Additions and subtractions have been summed up as addi-
tions, multiplications and divisions are combined in mul-
tiplications, and powers include squares and square roots.
In figure 4 the overall computations, i.e. including update
operations and final position estimation, of both algorithms
are illustrated. The logarithmic representation shows that the
number of multiplications, which is strongly affected by
update operations, was most significantly decreased using
sDLSnu. About 98% of multiplacations and 95% of additions
have been saved in large WSNs. Even the number of powers
and square roots have been reduced by about 75%.

1

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000
deployed sensor nodes

m
ea

n
nu

m
be

r o
f o

pe
ra

tio
ns

sDLS: additions sDLS: multiplications sDLS: powers
sDLS(nu): additions sDLS(nu): multiplications sDLS(nu): powers

Figure 4. Mean number of operations performed on a blind node

In contrast to figure 4, only the final calculation part i.e.
position estimation after the update process, is shown in
figure 5. Due to the slightly increased number of used beacon
nodes, the number of computations within this part have
been also slightly rised. But as illustrated in figure 4, this
increase is marginal compared the achieved savings.

276

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000
deployed sensor nodes

m
ea

n
nu

m
be

r o
f o

pe
ra

tio
ns

sDLS: additions (final) sDLS: multiplications (final) sDLS: powers (final)
sDLS(nu): additions (final) sDLS(nu): multiplications (final) sDLS(nu): powers (final)

Figure 5. Mean number of operations performed for final determination

Additionally, figure 6 compares overall cost of the new
sDLSnu approach and cost, spend for the final calculation
of sDLS. It is shown that the cost is nearly the same.
The additional cost is caused by the performed distance
estimation and the number of used beacon nodes, which is
slightly higher.

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

deployed sensor nodes

m
ea

n
nu

m
be

r o
f o

pe
ra

tio
ns

sDLS: additions (final) sDLS: multiplications (final) sDLS: powers (final)
sDLS(nu): additions sDLS(nu): multiplications sDLS(nu): powers

Figure 6. Mean number of operations performed for final determination
(sDLS) and complete determination (sDLSnu), respectively

C. Localization

To compare performance of localization, each blind node
determines its localization error as distance between real
position and estimated position. The results in figure 7 show
that the averaged localization error is slightly higher, using
sDLSnu. The assumed reason is that the beacons used by
sDLSnu tend to be arranged less polydirectional. Compared
to sDLS, sDLSnu left out beacons at one side and uses
additional beacons on the opposite side.

VI. CONCLUSION

The presented sDLSnu approach provides significant im-
provements, concerning cost of computation, saving about
95%. Accuracy of localization is only slightly impaired.
Furthermore, it causes no additional communication.

While cost of computations have been significantly re-
duced in this work, cost of data transmission was not
addressed until now. One possibility to reduce data trans-
mission may be to share precalculated data or parts of it

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400 500 600 700 800 900 1000

deployed sensor nodes

m
ea

n
lo

ca
liz

at
io

n
er

ro
r [

ad
u]

sDLS: mean error sDLS(nu): mean error

Figure 7. Mean error of localization over total number of deployed nodes

amoung nearby beacon nodes. A suitable solution to share
precalculation among beacon nodes may be a cluster based
structure like 4-MASCLE [2].

It is also a challenge to improve localization to achieve
at least accuracy of the original sDLS.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation under grant number BI467/17-2 (keyword: Geosens2)

REFERENCES

[1] K. Akkaya and M. F. Younis, “A survey on routing protocols
for wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3,
pp. 325–349, 2005.

[2] J. Salzmann, R. Behnke, M. Gag, and D. Timmermann,
“4-MASCLE - Improved Coverage Aware Clustering with Self
Healing Abilities,” International Symposium on Multidisci-
plinary Autonomous Networks and Systems (MANS 2009), Jul.
2009.

[3] R. Behnke and D. Timmermann, “AWCL: Adaptive Weighted
Centroid Localization as an efficient Improvement of Coarse
Grained Localization,” Positioning, Navigation and Commu-
nication, 2008. WPNC 2008. 5th Workshop on, pp. 243–250,
Mar. 2008.

[4] F. Reichenbach, A. Born, D. Timmermann, and R. Bill, “A
distributed linear least squares method for precise localization
with low complexity in wireless sensor networks,” Distributed
Computing in Sensor Systems, pp. 514–528, 2006.

[5] R. Behnke, J. Salzmann, D. Lieckfeldt, and D. Timmermann,
“sDLS - Distributed Least Squares Localization for Large
Wireless Sensor Networks,” International Workshop on Sens-
ing and Acting in Ubiquitous Environments, Oct. 2009.

[6] W. S. Murphy and W. Hereman, “Determination of a posi-
tion in three dimensions using trilateration and approximate
distances,” Tech. Rep., 1999.

[7] D. S. Watkins, Fundamentals of matrix computations, 2nd ed.,
ser. Pure and Applied Mathematics. New York: Wiley-
Interscience [John Wiley & Sons], 2002.

[8] Y. Zhang, M. Fromherz, and L. Kuhn, “Rmase: Rout-
ing modeling application simulation environment,” 2009,
http://www2.parc.com/isl/groups/era/nest/Rmase/.

277

